Although dairy calves are more thermotolerant relative to mature cows, they are still susceptible to heat stress, as demonstrated by elevated physiological responses and reduced feed intake under high ambient temperature and relative humidity. However, indicators of heat stress have not been well-characterized in calves. Herein, we evaluated associations between environmental and thermoregulatory and productive animal-based indicators of heat stress in dairy calves exposed to chronic heat stress or continuous cooling in a subtropical climate. Holstein calves were exposed to heat stress (HT; shade of barn, n = 24) or continuous cooling (CL; shade of barn plus 2 fans, n = 24) from 2 to 42 d of age. Environmental indices, including ambient temperature, relative humidity, temperature-humidity index (THI), and wind speed, and animal-based indices, including respiration (RR), heart rate (HR), rectal (RT), and skin temperature (ST) were recorded thrice daily (0900, 1300, and 1900 h). Milk replacer (MI) and grain intakes were recorded daily from 15 to 42 d of age. Using segmented regression models, we then estimated THI thresholds for significant changes in physiological responses. We found a strong, positive correlation between animal-based indicators (except for HR, MI, and grain intakes) and ambient temperature and THI, with the highest correlation obtained with ST and THI (r ≥ 0.72). Ambient temperature and ST and ambient temperature or THI and MI were the only correlations that differed between treatments. The coefficient of determination (R) obtained from regression analyses to model animal-based indicators was substantially improved by the inclusion of environmental indicators, with the greatest improvement achieved with THI. Overall, continuous cooling by fans promoted calf heat loss as CL calves had lower RR, RT, ST, and higher feed intake compared with HT calves. Temperature-humidity index breakpoints could be determined for RT (THI = 67), RR (THI = 65), and MI (THI = 82) in HT calves, and only for RR (THI = 69) in CL calves. Skin temperature variables had no detectable breakpoints in either treatment due to the strong linear relationship to THI. Collectively, our results suggest that ST is appropriate to estimate chronic heat stress and that THI is the best environmental indicator of heat stress in dairy calves raised in a shaded, subtropical environment. At a practical level, calves should be closely monitored when THI reaches 65 to 69 to minimize the risk of heat stress-related impairments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2020-18381 | DOI Listing |
Nat Commun
January 2025
Department of Water and Climate, Vrije Universiteit Brussel, Brussels, Belgium.
Irrigation rapidly expanded during the 20 century, affecting climate via water, energy, and biogeochemical changes. Previous assessments of these effects predominantly relied on a single Earth System Model, and therefore suffered from structural model uncertainties. Here we quantify the impacts of historical irrigation expansion on climate by analysing simulation results from six Earth system models participating in the Irrigation Model Intercomparison Project (IRRMIP).
View Article and Find Full Text PDFGenes Genet Syst
January 2025
Faculty of Science, Hokkaido University.
In our study, we aimed to identify new mutants resulting from ONSEN transposition in Arabidopsis thaliana by subjecting nrpd1 mutants to heat stress. We isolated a mutant with a significantly elongated hypocotyl, named "Long hypocotyl in ONSEN inserted line 1" (HYO1). This phenotype was heritable, with progeny consistently displaying longer hypocotyls than the wild type.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China. Electronic address:
Tartary buckwheat (Fagopyrum tataricum), a functional grain known for its medicinal and nutritional properties, has garnered significant attention due to its high flavonoid content and unique health benefits. Heat stress during the flowering stage can lead to sterility in Tartary buckwheat, resulting in reduced yields. This study investigates the effects of a treatment (30/27 °C for 7 days) on flower development, fertility, stress physiology, and gene expression in Tartary buckwheat, while also validating the efficacy of hormone treatments in alleviating the negative effects of heat stress.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA.
The upper ocean provides thermal energy to tropical cyclones. However, the impacts of the subsurface ocean on tropical cyclogenesis have been largely overlooked. Here, we show that the subsurface variabilities associated with the variation in the 26 °C isothermal depth have pronounced impacts on tropical cyclogenesis over global oceans.
View Article and Find Full Text PDFMar Environ Res
January 2025
School of Marine Science and Engineering, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, China. Electronic address:
The scleractinian corals conduct various responses upon heat stress such as bleaching and tissue loss, and colonies from the same coral species can conduct differential physiological activities with the biochemical basis unknown. In the present study, factors that influence the heat stress responses in coral Pocillopora damicornis were investigated. It was observed that P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!