Cellular and synaptic mechanisms underlying how chronic pain induces maladaptive alterations to local circuits in the medial prefrontal cortex (mPFC), while emerging, remain unresolved. Consistent evidence shows that chronic pain attenuates activity in the prelimbic (PL) cortex, a mPFC subregion. This reduced activity is thought to be driven by increased inhibitory tone within PL circuits. Enhanced input from the basolateral amygdala (BLA) to inhibitory neurons in PL cortex is one well-received mechanism for this circuit change. In mice, we used retrograde labeling, brain slice recordings, and optogenetics to selectively stimulate and record ascending BLA inputs onto PL neurons that send projections to the periaqueductal gray (PAG), which is a midbrain structure that plays a significant role in endogenous analgesia. Activating BLA projections evoked both excitatory and inhibitory currents in cortico-PAG (CP) neurons, as we have shown previously. We measured changes to the ratio of BLA-evoked excitatory to inhibitory currents in the spared nerve injury (SNI) model of neuropathic pain. Our analysis reveals a reduced excitation-inhibition (E/I) ratio of BLA inputs to PL-CP neurons 7 days after SNI. The E/I ratio of BLA inputs to CP neurons in neighboring infralimbic (IL) cortex was unchanged in SNI animals. Collectively, this study reveals that the overall E/I balance of BLA inputs to PL neurons projecting to the PAG is reduced in a robust neuropathic pain model. Overall, our findings provide new mechanistic insight into how nerve injury produces dysfunction in PL circuits connected to structures involved in pain modulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325111 | PMC |
http://dx.doi.org/10.1186/s13041-020-00638-w | DOI Listing |
J Neurosci
January 2025
Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599.
Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC-BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA).
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA.
While the basolateral amygdala (BLA) is critical in the consolidation of emotional memories, mechanisms underlying memory consolidation in this region are not well understood. In the hippocampus, memory consolidation depends upon network signatures termed sharp wave ripples (SWR). These SWRs largely occur during states of awake rest or slow wave sleep and are inversely correlated with cholinergic tone.
View Article and Find Full Text PDFEur J Sport Sci
January 2025
M3-BIORES, Department of Biosystems, KU Leuven, Leuven, Belgium.
With the development of power output sensors in the field of paddle sports and the ongoing advancements in dynamical analysis of exercise data, this study aims to model the measurements of external training intensity in relation to heart rate (HR) time-series during flat-water kayak sprint. Nine elite athletes performed a total of 47 interval training sessions with incremental intensity (light to (sub-) maximal effort levels). The data of HR, speed and power output were measured continuously and rating of perceived exertion and blood lactate concentration ([BLa]) were sampled at the end of each interval stage.
View Article and Find Full Text PDFNature
December 2024
Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
Anhedonia, the diminished drive to seek, value, and learn about rewards, is a core feature of major depressive disorder. The neural underpinnings of anhedonia and how this emotional state drives behaviour remain unclear. Here we investigated the neural code of anhedonia by taking advantage of the fact that when mice are exposed to traumatic social stress, susceptible animals become socially withdrawn and anhedonic, whereas others remain resilient.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!