Brain tight junction protein expression in sepsis in an autopsy series.

Crit Care

Division of Intensive Care Medicine, Department of Anesthesiology, Research Group of Surgery, Anesthesiology and Intensive Care Medicine, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, Oulu, Finland.

Published: June 2020

Background: Neuroinflammation often develops in sepsis along with increasing permeability of the blood-brain barrier (BBB), which leads to septic encephalopathy. The barrier is formed by tight junction structures between the cerebral endothelial cells. We investigated the expression of tight junction proteins related to endothelial permeability in brain autopsy specimens in critically ill patients deceased with sepsis and analyzed the relationship of BBB damage with measures of systemic inflammation and systemic organ dysfunction.

Methods: The case series included all (385) adult patients deceased due to sepsis in the years 2007-2015 with available brain specimens taken at autopsy. Specimens were categorized according to anatomical location (cerebrum, cerebellum). The immunohistochemical stainings were performed for occludin, ZO-1, and claudin. Patients were categorized as having BBB damage if there was no expression of occludin in the endothelium of cerebral microvessels.

Results: Brain tissue samples were available in 47 autopsies, of which 38% (18/47) had no expression of occludin in the endothelium of cerebral microvessels, 34% (16/47) developed multiple organ failure before death, and 74.5% (35/47) had septic shock. The deceased with BBB damage had higher maximum SOFA scores (16 vs. 14, p = 0.04) and more often had procalcitonin levels above 10 μg/L (56% vs. 28%, p = 0.045) during their ICU stay. BBB damage in the cerebellum was more common in cases with C-reactive protein (CRP) above 100 mg/L as compared with CRP less than 100 (69% vs. 25%, p = 0.025).

Conclusions: In fatal sepsis, damaged BBB defined as a loss of cerebral endothelial expression of occludin is related with severe organ dysfunction and systemic inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325252PMC
http://dx.doi.org/10.1186/s13054-020-03101-3DOI Listing

Publication Analysis

Top Keywords

bbb damage
16
tight junction
12
expression occludin
12
cerebral endothelial
8
autopsy specimens
8
patients deceased
8
deceased sepsis
8
systemic inflammation
8
occludin endothelium
8
endothelium cerebral
8

Similar Publications

Foreign Contaminants Target Brain Health.

CNS Neurol Disord Drug Targets

January 2025

Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi, India-110017.

Neurodisease, caused by undesired substances, can lead to mental health conditions like depression, anxiety and neurocognitive problems like dementia. These substances can be referred to as contaminants that can cause damage, corruption, and infection or reduce brain functionality. Contaminants, whether conceptual or physical, have the ability to disrupt many processes.

View Article and Find Full Text PDF

Infiltrating peripheral monocyte TREM-1 mediates dopaminergic neuron injury in substantia nigra of Parkinson's disease model mice.

Cell Death Dis

January 2025

NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.

Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear.

View Article and Find Full Text PDF

Anxiety disorder, a prevalent mental health issue, is one of the leading causes of disability worldwide. Damage to the blood-brain barrier (BBB) is implicated in anxiety, but its regulatory mechanisms remain unclear. Herein, we show that adrenomedullin 2 (ADM2), a novel angiogenic growth factor, alleviates autistic and anxiety-like behaviors in mice.

View Article and Find Full Text PDF

Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.

View Article and Find Full Text PDF

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!