Herein, we report an iron-catalyzed, convenient, and expedient strategy for the synthesis of styrene and naphthalene derivatives with the liberation of dihydrogen. The use of a catalyst derived from an earth-abundant metal provides a sustainable strategy to olefins. This method exhibits wide substrate scope (primary and secondary alcohols) functional group tolerance (amino, nitro, halo, alkoxy, thiomethoxy, and S- and N-heterocyclic compounds) that can be scaled up. The unprecedented synthesis of 1-methyl naphthalenes proceeds via tandem methenylation/double dehydrogenation. Mechanistic study shows that the cleavage of the C-H bond of alcohol is the rate-determining step.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.0c01173DOI Listing

Publication Analysis

Top Keywords

iron-catalyzed direct
4
direct julia-type
4
julia-type olefination
4
olefination alcohols
4
alcohols report
4
report iron-catalyzed
4
iron-catalyzed convenient
4
convenient expedient
4
expedient strategy
4
strategy synthesis
4

Similar Publications

An iron-catalyzed oxidative [3 + 3] annulation of oxime esters with inactivated saturated ketones is described. This cascade strategy allows one-step rapid synthesis of various structurally important pyridines through an oxidative dehydrogenation/annulation/oxidative aromatization sequence via direct α,β-dehydrogenation of simple saturated ketones followed by annulation with oximes. This method shows good functional group tolerance, readily accessible starting materials, a wide substrate scope, high chemoselectivity, and no need for extra stoichiometric oxidant and is also applicable to the late-stage functionalization of natural products.

View Article and Find Full Text PDF

Laser-Induced Graphene (LIG) is a 3D, conductive, porous material with a high surface area, produced by laser irradiation of synthetic polymers with high thermal stability. Recently, the focus has shifted toward sustainable bioderived and biodegradable precursors, such as lignocellulosic materials. Despite starch being an abundant and cost-effective biopolymer, direct laser scribing on starch-derived precursors has not yet been explored.

View Article and Find Full Text PDF

Intramolecular C-H Oxidation in Iron(V)-oxo-carboxylato Species Relevant in the γ-Lactonization of Alkyl Carboxylic Acids.

ACS Catal

September 2024

Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.

High-valent oxoiron species have been invoked as oxidizing agents in a variety of iron-dependent oxygenases. Taking inspiration from nature, selected nonheme iron complexes have been developed as catalysts to elicit C-H oxidation through the mediation of putative oxoiron(V) species, akin to those proposed for Rieske oxygenases. The addition of carboxylic acids in these iron-catalyzed C-H oxidations has proved highly beneficial in terms of product yields and selectivities, suggesting the direct involvement of iron(V)-oxo-carboxylato species.

View Article and Find Full Text PDF

A straightforward and general strategy for the catalytic asymmetric synthesis of β-tryptophans by carboxylic-acid-directed intermolecular C-H amination has been developed. The iron-catalyzed C-H amination of 3-indolepropionic acids with BocNHOMs (Boc, -butyloxycarbonyl; OMs, methylsulfonate) in the presence of the base piperidine provides N-Boc-protected β-tryptophans in a single step with high enantiomeric excess (ee) of up to >99%. Mechanistic experiments and density functional theory calculations support a mechanism through carboxylate-directed iron-mediated C(sp)-H nitrene insertion.

View Article and Find Full Text PDF

Iron-Catalyzed C-H Arylphosphorylation of Quinoxalines.

Org Lett

September 2024

Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.

A one-pot strategy for iron-catalyzed C2,3-H arylphosphorylation of electron-deficient quinoxalines with phosphines and aryl compounds is reported. The proposed method features the use of non-noble metal catalysts, the capacity of utilizing multiple aryl compounds as substrates, the simultaneous formation of C-P and C-C bonds in one pot, the simplicity of its operation, the mildness of the reaction conditions, and its compatibility with a wide range of substrates. Moreover, it offers a practical route for direct access to 2-aryl-3-phosphino -heteroarenes, a class of potential cyclometalated C^N and N^P bidentate ligands that are difficult to prepare with existing C(sp)-H functionalization methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!