Purpose: Assessing the status of metastasis in sentinel lymph nodes (SLNs) by pathologists is an essential task for the accurate staging of breast cancer. However, histopathological evaluation of SLNs by a pathologist is not easy and is a tedious and time-consuming task. The purpose of this study is to review a challenge competition (HeLP 2018) to develop automated solutions for the classification of metastases in hematoxylin and eosin-stained frozen tissue sections of SLNs in breast cancer patients.
Materials And Methods: A total of 297 digital slides were obtained from frozen SLN sections, which include post-neoadjuvant cases (n = 144, 48.5%) in Asan Medical Center, South Korea. The slides were divided into training, development, and validation sets. All of the imaging datasets have been manually segmented by expert pathologists. A total of 10 participants were allowed to use the Kakao challenge platform for six weeks with two P40 GPUs. The algorithms were assessed in terms of the AUC (area under receiver operating characteristic curve).
Results: The top three teams showed 0.986, 0.985, and 0.945 AUCs for the development set and 0.805, 0.776, and 0.765 AUCs for the validation set. Micrometastatic tumors, neoadjuvant systemic therapy, invasive lobular carcinoma, and histologic grade 3 were associated with lower diagnostic accuracy.
Conclusion: In a challenge competition, accurate deep learning algorithms have been developed, which can be helpful in making frozen diagnosis of intraoperative SLN biopsy. Whether this approach has clinical utility will require evaluation in a clinical setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577824 | PMC |
http://dx.doi.org/10.4143/crt.2020.337 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!