BACKGROUND Kupffer cells and natural killer (NK) cells has been identified as contributing factors in the pathogenesis of hepatitis, but the detailed mechanism of these cell types in the pathogenesis of primary biliary cholangitis (PBC) is poorly understood. MATERIAL AND METHODS In this study, polyinosinic: polycytidylic acid (poly I: C), 2-octynoic acid-bovine serum albumin (2OA-BSA) and Freund's adjuvant (FA) were injected to establish a murine PBC model, from which NK cells and Kupffer cells were extracted and isolated. The cells were then co-cultivated in a designed culture system, and then NK group 2, member D (NKG2D), retinoic acid early inducible-1 (RAE-1), F4/80, and cytokine expression levels were detected. RESULTS The results showed close crosstalk between Kupffer cells and NK cells. PBC mice showed increased surface RAE-1 protein expression and Kupffer cell cytokine secretion, which subsequently activated NK cell-mediated target cell killing via NKG2D/RAE-1 recognition, and increased inflammation. NK cell-derived interferon-γ (IFN-γ) and Kupffer cell-derived tumor necrosis factor alpha (TNF-alpha) were found to synergistically regulate inflammation. Moreover, interleukin (IL)-12 and IL-10 improved the crosstalk between NK cells and Kupffer cells. CONCLUSIONS Our findings in mice are the first to suggest the involvement of the NKG2D/RAE-1 interaction and cytokines in the synergistic effects of NK and Kupffer cells in PBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346879PMC
http://dx.doi.org/10.12659/MSM.923726DOI Listing

Publication Analysis

Top Keywords

kupffer cells
24
cells
11
kupffer
8
natural killer
8
killer cells
8
group member
8
acid early
8
early inducible-1
8
inducible-1 rae-1
8
interaction cytokines
8

Similar Publications

Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.

View Article and Find Full Text PDF

The C3/C3aR pathway exacerbates acetaminophen-induced mouse liver injury via upregulating podoplanin on the macrophage.

FASEB J

January 2025

Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.

Acute liver failure (ALF) is a life-threatening condition that occurs when the liver sustains severe damage and rapidly loses its function. The primary cause of ALF is the overdose of acetaminophen (APAP), and its treatment is relatively limited. The involvement of the complement system in the development of ALF has been implicated.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (MASH), is a major risk factor for cirrhosis and hepatocellular carcinoma (HCC) and a leading cause of liver transplantation. MASH is caused by an accumulation of toxic fat molecules in the hepatocyte which leads to inflammation and fibrosis. Inadequate human "MASH in a dish" models have limited our advances in understanding MASH pathogenesis and in drug discovery.

View Article and Find Full Text PDF

The cellular characteristics of the opportunistic fungal pathogen Cryptococcus species were investigated in the infected liver of an immunocompetent host using transmission electron microscopy (TEM). With no records of immunodeficiency, the 3-year-old female patient displayed a high-grade fever, lethargy, and increasing jaundice. TEM analysis revealed the presence of round yeast cells in the patient's liver.

View Article and Find Full Text PDF

Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!