Introduction: Obesity-associated asthma is characterized by type 2-low airway inflammation. We previously showed that EM900, which is a 12-membered nonantibiotic macrolide, suppressed airway inflammation in a mouse model of asthma exacerbation. The aim of this study was to clarify the effects of EM900 in obesity-associated asthma.

Methods: BALB/c mice were fed a low-fat diet (LFD) or high-fat diet (HFD). Mice were intranasally sensitized and challenged with house dust mites (HDMs) and were orally administered EM900. Airway inflammation was assessed using inflammatory cells in bronchoalveolar lavage (BALF). Cytokines were examined by ELISA in lung tissues. Lung interstitial macrophages (CD45+, CD11clow, CD11b+, and Ly6c-) were counted by flow cytometry in single cells from lung tissues.

Results: Body weight increased significantly in the HFD compared with the LFD group. The total cell count and numbers of neutrophils and eosinophils in BALF were significantly suppressed by EM900 administration in the HFD-HDM group. The levels of interleukin (IL)-17A were increased in the HFD-HDM group compared with the LFD-HDM group, although the difference did not reach statistical significance. The levels of IL-17A, macrophage inflammatory protein 2, IL-1β, IL-5, and regulated on activation, normal T cell expressed and secreted in lung tissue were significantly suppressed by EM900 administration in the HFD-HDM group. The percentage of interstitial macrophages in lungs was significantly decreased by EM900 administration in the HFD-HDM group.

Conclusion: Both type 2 and type 2-low airway inflammation were attenuated by EM900 in this obesity-associated asthma model. These results show that EM900 might be a candidate agent for the treatment of obesity-associated asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000508709DOI Listing

Publication Analysis

Top Keywords

airway inflammation
20
obesity-associated asthma
16
em900 administration
12
administration hfd-hdm
12
hfd-hdm group
12
em900
9
nonantibiotic macrolide
8
house dust
8
inflammation mouse
8
mouse model
8

Similar Publications

Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model.

Int Immunopharmacol

December 2024

Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:

Background: Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects.

View Article and Find Full Text PDF

Progress of CCL20-CCR6 in the airways: a promising new therapeutic target.

J Inflamm (Lond)

December 2024

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.

The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) modulates the inflammatory response in a range of pathological conditions. However, whether FGF21 modulates asthma remains unexplored. This study sought to investigate its function in asthma using an ovalbumin (OVA)-induced mouse model.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.

View Article and Find Full Text PDF

Introduction: Cerebral ischemia leads to multiple organ dysfunctions, with the lungs among the most severely affected. Although adverse pulmonary consequences contribute significantly to reduced life expectancy after stroke, the impact of global or focal cerebral ischemia on respiratory mechanical parameters remains poorly understood.

Methods: Rats were randomly assigned to undergo surgery to induce permanent global cerebral ischemia (2VO) or focal cerebral ischemia (MCAO), or to receive a sham operation (SHAM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!