Motivated by the need to interpret the results from a combined use of in vivo brain Magnetic Resonance Elastography (MRE) and Diffusion Tensor Imaging (DTI), we developed a computational framework to study the sensitivity of single-frequency MRE and DTI metrics to white matter microstructure and cell-level mechanical and diffusional properties. White matter was modeled as a triphasic unidirectional composite, consisting of parallel cylindrical inclusions (axons) surrounded by sheaths (myelin), and embedded in a matrix (glial cells plus extracellular matrix). Only 2D mechanics and diffusion in the transverse plane (perpendicular to the axon direction) was considered, and homogenized (effective) properties were derived for a periodic domain containing a single axon. The numerical solutions of the MRE problem were performed with ABAQUS and by employing a sophisticated boundary-conforming grid generation scheme. Based on the linear viscoelastic response to harmonic shear excitation and steady-state diffusion in the transverse plane, a systematic sensitivity analysis of MRE metrics (effective transverse shear storage and loss moduli) and DTI metric (effective radial diffusivity) was performed for a wide range of microstructural and intrinsic (phase-based) physical properties. The microstructural properties considered were fiber volume fraction, and the myelin sheath/axon diameter ratio. The MRE and DTI metrics are very sensitive to the fiber volume fraction, and the intrinsic viscoelastic moduli of the glial phase. The MRE metrics are nonlinear functions of the fiber volume fraction, but the effective diffusion coefficient varies linearly with it. Finally, the transverse metrics of both MRE and DTI are insensitive to the axon diameter in steady state. Our results are consistent with the limited anisotropic MRE and co-registered DTI measurements, mainly in the corpus callosum, available in the literature. We conclude that isotropic MRE and DTI constitutive models are good approximations for myelinated white matter in the transverse plane. The unidirectional composite model presented here is used for the first time to model harmonic shear stress under MRE-relevant frequency on the cell level. This model can be extended to 3D in order to inform the solution of the inverse problem in MRE, establish the biological basis of MRE metrics, and integrate MRE/DTI with other modalities towards increasing the specificity of neuroimaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/aba0cc | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!