A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catalytic Asymmetric trans-Selective Hydrosilylation of Bisalkynes to Access AIE and CPL-Active Silicon-Stereogenic Benzosiloles. | LitMetric

Catalytic Asymmetric trans-Selective Hydrosilylation of Bisalkynes to Access AIE and CPL-Active Silicon-Stereogenic Benzosiloles.

iScience

Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou 730000, P. R. China. Electronic address:

Published: July 2020

Chirality widely exists in a diverse array of biologically active molecules and life forms, and the catalytic constructions of chiral molecules have triggered a heightened interest in the fields of chemistry and materials and pharmaceutical sciences. However, the synthesis of silicon-stereogenic organosilicon compounds is generally recognized as a much more difficult task than that of carbon-stereogenic centers because of no abundant organosilicon-based chiral sources in nature. Herein, we reported a highly enantioselective rhodium-catalyzed trans-selective hydrosilylation of silicon-tethered bisalkynes to access chiral benzosiloles bearing a silicon-stereogenic center. This protocol featured with chiral Ar-BINMOL-Phos bearing hydrogen-bond donors as a privileged P-ligand for catalytic asymmetric hydrosilylation that is operationally simple and has 100% atom-economy with good functional group tolerability as well as high enantioselectivity (up to >99:1 er). Benefiting from the trans-selective hydrosilylation with the aid of Rh/Ar-BINMOL-Phos-based asymmetric catalysis, the Si-stereogenic benzosiloles exhibited pronounced aggregation-induced emission (AIE) and circularly polarized luminescence (CPL) activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326740PMC
http://dx.doi.org/10.1016/j.isci.2020.101268DOI Listing

Publication Analysis

Top Keywords

trans-selective hydrosilylation
12
catalytic asymmetric
8
bisalkynes access
8
asymmetric trans-selective
4
hydrosilylation
4
hydrosilylation bisalkynes
4
access aie
4
aie cpl-active
4
cpl-active silicon-stereogenic
4
silicon-stereogenic benzosiloles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!