In endovascular and cardiovascular surgery, real-time and accurate segmentation and tracking of interventional instruments can aid in reducing radiation exposure, contrast agent and processing time. Nevertheless, this task often comes with the challenges of the elongated deformable structures with low contrast in noisy X-ray fluoroscopy. To address these issues, a novel efficient network architecture, termed pyramid attention recurrent networks (PAR-Net), is proposed for real-time guidewire segmentation and tracking. The proposed PAR-Net contains three major modules, namely pyramid attention module, recurrent residual module and pre-trained MobileNetV2 encoder. Specifically, a hybrid loss function of both reinforced focal loss and dice loss is proposed to better address the issues of class imbalance and misclassified examples. Quantitative and qualitative evaluations on clinical intraoperative images demonstrate that the proposed approach significantly outperforms simpler baselines as well as the best previously published result for this task, achieving the state-of-the-art performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2020.101734 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!