Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires information about the acquisition process (e.g., coils sensitivity maps or reconstruction coefficients), which is usually not available. We introduce two new automated methods using the moments and maximum likelihood equations of the Gamma distribution to estimate noise distributions as they explicitly depend on the number of coils, making it possible to estimate all unknown parameters using only the magnitude data. A rejection step is used to make the framework automatic and robust to artifacts. Simulations using stationary and spatially varying noncentral chi noise distributions were created for two diffusion weightings with SENSE or GRAPPA reconstruction and 8, 12 or 32 receiver coils. Furthermore, MRI data of a water phantom with different combinations of parallel imaging were acquired on a 3T Philips scanner along with noise-only measurements. Finally, experiments on freely available datasets from a single subject acquired on a 3T GE scanner are used to assess reproducibility when limited information about the acquisition protocol is available. Additionally, we demonstrated the applicability of the proposed methods for a bias correction and denoising task on an in vivo dataset acquired on a 3T Siemens scanner. A generalized version of the bias correction framework for non integer degrees of freedom is also introduced. The proposed framework is compared with three other algorithms with datasets from three vendors, employing different reconstruction methods. Simulations showed that assuming a Rician distribution can lead to misestimation of the noise distribution in parallel imaging. Results on the acquired datasets showed that signal leakage in multiband can also lead to a misestimation of the noise distribution. Repeated acquisitions of in vivo datasets show that the estimated parameters are stable and have lower variability than compared methods. Results for the bias correction and denoising task show that the proposed methods reduce the appearance of noise at high b-value. The proposed algorithms herein can estimate both parameters of the noise distribution automatically, are robust to signal leakage artifacts and perform best when used on acquired noise maps.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2020.101758DOI Listing

Publication Analysis

Top Keywords

noise distribution
16
noise distributions
12
parallel imaging
12
bias correction
12
noise
9
diffusion mri
8
mri data
8
acquisition process
8
receiver coils
8
noncentral chi
8

Similar Publications

Economic burden of breast cancer in India, 2000-2021 and forecast to 2030.

Sci Rep

January 2025

Faculty of Life and Allied Health Sciences, MS Ramiah University of Applied Sciences (RUAS), MSR Nagar, New BEL Road, Bangalore, 560054, India.

Background Breast cancer represents a significant public health concern in India, accounting for 28% of all cancer diagnoses and imposing a substantial economic burden. This study introduces a novel approach to forecasting the number of breast cancer cases (based on prevalence rates) and estimating the associated economic impact in India using the autoregressive integrated moving average (ARIMA) model. Methods Data on the prevalence of breast cancer in India from 2000 to 2021 were obtained from the Global Burden of Disease (GBD) database.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common and deadly forms of cancer worldwide, necessitating accurate and early detection to improve treatment outcomes. Traditional diagnostic methods often rely on manual examination of pathological images, which can be time-consuming and prone to human error. This study presents an advanced approach for colorectal cancer detection using a Random Hinge Exponential Distribution coupled Attention Network (RHED-CANet) on pathological images.

View Article and Find Full Text PDF

Background And Purpose: DWI is crucial for detecting infarction stroke. However, its spatial resolution is often limited, hindering accurate lesion visualization. Our aim was to evaluate the image quality and diagnostic confidence of deep learning (DL)-based super-resolution reconstruction for brain DWI of infarction stroke.

View Article and Find Full Text PDF

Schizophrenia detection using distributed activation function-based statistical attentional bidirectional-long short-term memory.

Comput Biol Med

January 2025

Department of Computer Science, Jamia Hamdard University, Near Batra Hospital, New Delhi, 110062, India. Electronic address:

Schizophrenia detection involves identifying the schizophrenia by analyzing specific patterns in Electroencephalogram (EEG) signals, which reflect brain activity associated with symptoms, like hallucinations and cognitive impairments. Existing models face challenges due to the complex and variable nature of EEG data, which may struggle to accurately capture critical temporal dependencies and relevant features. Traditional approaches often lack adaptability, limiting their ability to differentiate schizophrenia patterns from other brain activities.

View Article and Find Full Text PDF

To establish the extent, distribution and frequency of in-vivo vessel wall [Ga]Ga-PentixaFor uptake and to determine its relationship with calcified atherosclerotic plaque burden (CAP) and cardiovascular risk factors (CVRF). 65 oncological patients undergoing [Ga]Ga-PentixaFor PET/CT were assessed. Radiotracer uptake (target-to-background ratio [TBR]) and CAP burden (including number of CAP sites, calcification circumference and thickness) in seven major vessel segments per patient were determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!