Novel Z-scheme WO/CeO heterojunction for improved photocatalytic hydrogen evolution.

J Colloid Interface Sci

School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224051, China.

Published: November 2020

The novel Z-scheme heterojunction photocatalyst WO/CeO was prepared by hydrothermal synthesis. The photocatalytic properties of WO/CeO were evaluated by photocatalytic hydrogen evolution under visible light. The result shows that the 15 wt% WO/CeO composite has the best hydrogen production efficiency of about 0.2061 mmol gh, which was 1.93 times higher than that the obtained pure CeO. The characterization results demonstrated that the existence of Z-scheme heterojunction structure at the contact interface of WO and CeO was the origin of the enhanced photocatalytic performance for hydrogen evolution, which could greatly increase the accumulation of photo-generated electrons and the separation efficiency of charge carrier. In accordance with density functional theory (DFT) calculation, we further confirmed the formation of Z-scheme heterojunction structures. This work is anticipated to expand the ideas for modifying CeO semiconductor materials to improve the rate of photocatalytic hydrogen production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.06.075DOI Listing

Publication Analysis

Top Keywords

photocatalytic hydrogen
12
hydrogen evolution
12
z-scheme heterojunction
12
novel z-scheme
8
hydrogen production
8
photocatalytic
5
hydrogen
5
wo/ceo
4
z-scheme wo/ceo
4
heterojunction
4

Similar Publications

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

Carbon, hydrogen, nitrogen and chlorine isotope fractionation during 3-chloroaniline transformation in aqueous environments by direct photolysis, TiO photocatalysis and hydrolysis.

Water Res

December 2024

School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:

This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.

View Article and Find Full Text PDF

Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.

View Article and Find Full Text PDF

Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb.

View Article and Find Full Text PDF

Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!