Tetrahymena is a single-cell eukaryotic organism present in all aquatic environments and can easily be maintained in laboratory conditions in a cost-effective manner. This review gives a brief description of the physiology of Tetrahymena, culture handling, and maintenance of Tetrahymena species. The review article focuses on various toxicological bioassays at different biological organizational (biochemical, individual, population, and community) levels. Furthermore, some techniques such as single cell gel electrophoresis (SCGE) and microcalorimetry assay are also available to investigate the effect of xenobiotics on the integrity of DNA and metabolic state of Tetrahymena species respectively. The article also discusses how the general physiology, behavioural activities and different organelles of Tetrahymena could be useful in toxicological studies. The strength and limitations of Tetrahymena over other model organisms are also discussed. This article also provides suggestions to overcome some problems related to toxicity assessment. Various aspects associated with variability in results, toxicity endpoints, characteristics of organisms and responses against xenobiotic substances (old and new emerging toxicants) are considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.140058 | DOI Listing |
Environ Health (Wash)
April 2024
National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.
The widespread use of chemical products inevitably brings many side effects as environmental pollutants. Toxicological assessment of compounds to aquatic life plays an important role in protecting the environment from their hazards. However, animal testing approaches for aquatic toxicity evaluation are time-consuming, expensive, and ethically limited, especially when there are a great number of compounds.
View Article and Find Full Text PDFJ Environ Sci (China)
September 2024
Agricultural and Biological Engineering Department, Purdue University, West Lafayette, IN, USA.
Ciprofloxacin (CIP) is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections. When CIP is discharged into the sewage system, it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics. In this study, boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate (EAP) process.
View Article and Find Full Text PDFChemosphere
October 2023
Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, 999077, Hong Kong. Electronic address:
Protozoa are sensitive indicators of pollutant toxicity. This review presents and discusses the toxicological studies of protozoa and the toxicological conventional test species (Daphnia magna) by pesticides and nanomaterials, particularly comparing the sensitivity of through relative tolerance analysis, Z-score, and species sensitivity index. The sensitivity of different species of protozoa varies greatly.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
October 2022
Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK. Electronic address:
Per-/Poly- fluoroalkyl substances represent emerging persistent organic pollutants. Their toxic effects can be broad, yet little attention has been given to organisms at the microscale. To address this knowledge shortfall, the unicellular eukaryote Tetrahymena pyriformis was exposed to increasing concentrations (0-5000 μM) of PFOA/PFOS and monitored for cellular motility, division and function (i.
View Article and Find Full Text PDFEnviron Monit Assess
April 2021
Environmental Chemistry and Toxicology Research Group, Cape Peninsula University of Technology, Bellville, 7535, South Africa.
Intensive livestock farming has increased the use of veterinary pharmaceuticals in many developing countries, and this is considered a significant concern to the freshwater ecosystem. However, the information on the potential acute toxicity of piggery effluent waste and the veterinary pharmaceutical effluent discharged into the aquatic environment is limited. This study assessed the adverse effect of a piggery effluent and the cocktail mixtures of high- and low-level doses of three frequently occurring veterinary pharmaceuticals (tetracycline (TETR), ivermectin (IVER), and salicylic acid (SALA)) on freshwater organisms using three representative freshwater biotests organisms: Pseudokirchneriella subcapitata (P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!