Edaphic factors determining the colonization of semiarid mine tailings by a ruderal shrub and two tree plant species: Implications for phytomanagement.

Chemosphere

Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingeniería Agronómica, Departamento de Ciencia y Tecnología Agraria, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain.

Published: November 2020

Phytomanagement has been considered a feasible technique to decrease the environmental risks associated to mine tailings and its implementation relies on a suitable plant species selection. The goal of this study was to identify the edaphic factors, including microbiology, affecting the establishment of plant species with contrasting growth patterns during the phytomanagement of mine tailings. For this purpose, a comprehensive rhizosphere characterization was performed in an early ruderal colonizer, Zygophyllum fabago and two late successional tree species, Pinus halepensis and Tetraclinis articulata, growing at a mine tailings pile in southeast Spain. The neutral pH of the tailings determined low 0.01 M CaCl metal extractable concentrations (e.g. <10 μg kg Pb and Cd). Thus, other soil properties different from metal concentrations resulted more determining to explain plant establishment. Results revealed that Z. fabago selectively colonized tailings patches characterized by high salinity (3.5 dS m) and high silt percentages (42%), showing a specific halotolerant rhizospheric microbial composition, such as the bacterial Sphingomonadales and Cytophagales orders and the fungal Pleosporales and Hyprocreales orders. The two tree species grew at moderate salinity areas of the tailings pile (1.7 dS m) with high sand percentages (85%), where Actinomycetales was the most abundant bacterial order (>10% abundance). The contrasting mycorrhizal behaviour of both tree species (ectomycorrhizal for P. halepensis and endomycorrhizal for T. articulata) could explain the differences found between their fungal rhizospheric composition. In terms of phytomanagement, the selective plant species colonization following specific soil patches at mine tailings would increase their biodiversity and resilience against environmental stressors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.127425DOI Listing

Publication Analysis

Top Keywords

mine tailings
20
plant species
16
edaphic factors
8
tree species
8
tailings
6
species
6
mine
5
factors determining
4
determining colonization
4
colonization semiarid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!