When deep convolutional neural networks (CNNs) are trained "end-to-end" on raw data, some of the feature detectors they develop in their early layers resemble the representations found in early visual cortex. This result has been used to draw parallels between deep learning systems and human visual perception. In this study, we show that when CNNs are trained end-to-end they learn to classify images based on whatever feature is predictive of a category within the dataset. This can lead to bizarre results where CNNs learn idiosyncratic features such as high-frequency noise-like masks. In the extreme case, our results demonstrate image categorisation on the basis of a single pixel. Such features are extremely unlikely to play any role in human object recognition, where experiments have repeatedly shown a strong preference for shape. Through a series of empirical studies with standard high-performance CNNs, we show that these networks do not develop a shape-bias merely through regularisation methods or more ecologically plausible training regimes. These results raise doubts over the assumption that simply learning end-to-end in standard CNNs leads to the emergence of similar representations to the human visual system. In the second part of the paper, we show that CNNs are less reliant on these idiosyncratic features when we forgo end-to-end learning and introduce hard-wired Gabor filters designed to mimic early visual processing in V1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.visres.2020.04.013 | DOI Listing |
Sci Rep
December 2024
Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, USA.
Groundwater monitoring is a crucial part of groundwater remediation that produces data from various strategically placed wells to maintain a water quality standard. Using the United States Department of Energy's Hanford 100-HRD area well data, recurrent neural networks are trained in the form of one-dimensional Convolutional Neural Networks (CNNs), Long Short Term Memory (LSTM) networks, and Dual-stage Attention-based LSTM (DA-LSTM) networks to reduce monitoring costs and increase data sampling responsiveness that is subject to laboratory analysis delays, with the best network being DA-LSTM achieving an R score of 0.82.
View Article and Find Full Text PDFTomography
December 2024
Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
This research introduces BAE-ViT, a specialized vision transformer model developed for bone age estimation (BAE). This model is designed to efficiently merge image and sex data, a capability not present in traditional convolutional neural networks (CNNs). BAE-ViT employs a novel data fusion method to facilitate detailed interactions between visual and non-visual data by tokenizing non-visual information and concatenating all tokens (visual or non-visual) as the input to the model.
View Article and Find Full Text PDFTomography
December 2024
Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 824005, Taiwan.
Breast cancer is a leading cause of mortality among women in Taiwan and globally. Non-invasive imaging methods, such as mammography and ultrasound, are critical for early detection, yet standalone modalities have limitations in regard to their diagnostic accuracy. This study aims to enhance breast cancer detection through a cross-modality fusion approach combining mammography and ultrasound imaging, using advanced convolutional neural network (CNN) architectures.
View Article and Find Full Text PDFTomography
November 2024
KYAMOS Ltd., 37 Polyneikis Street, Strovolos, Nicosia 2047, Cyprus.
: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. : In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations.
View Article and Find Full Text PDFJ Imaging
December 2024
Institute of Oceanic Engineering Research, University of Malaga, 29010 Malaga, Spain.
On 11 February 2020, the prevalent outbreak of COVID-19, a coronavirus illness, was declared a global pandemic. Since then, nearly seven million people have died and over 765 million confirmed cases of COVID-19 have been reported. The goal of this study is to develop a diagnostic tool for detecting COVID-19 infections more efficiently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!