Treatment with shCCL20-CCR6 nanodendriplexes and human mesenchymal stem cell therapy improves pathology in mice with repeated traumatic brain injury.

Nanomedicine

Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA. Electronic address:

Published: October 2020

Traumatic brain injury (TBI) is a devastating neurological disorder, although the underlying pathophysiology is poorly understood. TBI causes blood-brain barrier (BBB) disruption, immune cell trafficking, neuroinflammation and neurodegeneration. CCL20 is an important chemokine mediating neuroinflammation. Human mesenchymal stem cell (hMSC) therapy is a promising regenerative approach but the inflammatory microenvironment in the brain tends to decrease the efficacy of the hMSC transplantation. Reducing the inflammation prior to hMSC therapy improves the outcome. We developed a combined nano-cell therapy by using dendrimers complexed with plasmids (dendriplexes) targeting CCL20 and its sole receptor CCR6 to reduce inflammation followed by hMSC transplantation. Treatment of TBI mice with shRNA conjugated dendriplexes followed by hMSC administration downregulated the inflammatory markers and significantly increased brain-derived neurotrophic factor (BDNF) expression in the cerebral cortex indicating future possible neurogenesis and improved behavioral deficits. Taken together, this nano-cell therapy ameliorates neuroinflammation and promotes brain tissue repair after TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2020.102247DOI Listing

Publication Analysis

Top Keywords

human mesenchymal
8
mesenchymal stem
8
stem cell
8
therapy improves
8
traumatic brain
8
brain injury
8
hmsc therapy
8
hmsc transplantation
8
nano-cell therapy
8
therapy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!