The blood-brain barrier (BBB) has a pivotal role in maintaining brain homeostasis. It robustly protects the brain parenchyma against the invasion of irrelevant substances, which may interrupt its critical function. From a pharmaceutical point of view, such a barrier may cause central nervous system (CNS) disorders refractory by restricting the therapeutics from accessing to their target sites in cerebral parenchyma. On the other side, the increasing rate of CNS disorders demands novel strategies to be developed for effective transferring the drugs through the BBB. Transcellular pathways seem to be more promising in ferrying across the BBB than paracellular route due to using the regular biological routes and retaining the BBB integrity, as well. The transcellular pathway contains several mechanisms for the transportation of therapeutic molecules, which are alternately applicable based on the physicochemical characteristics of the crossing molecule. In the present article, the most considerable transcellular routes, including the adsorptive mediated transcytosis (AMT), receptor-mediated transcytosis (RMT), cell-mediated transcytosis (CMT), and the efflux pumps-mediated drug delivery approaches were reviewed. Exosome, as a new drug carrier, utilizable in various transcellular routes, was also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119582 | DOI Listing |
Nat Commun
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.
View Article and Find Full Text PDFNat Commun
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.
View Article and Find Full Text PDFACS Infect Dis
December 2024
Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India.
Protozoan parasite infections, particularly leishmaniasis, present significant public health challenges in tropical and subtropical regions, affecting socio-economic status and growth. Despite advancements in immunology, effective vaccines remain vague, leaving drug treatments as the primary intervention. However, existing medications face limitations, such as toxicity and the rise of drug-resistant parasites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!