JAK2 regulates Nav1.6 channel function via FGF14 phosphorylation.

Biochim Biophys Acta Mol Cell Res

Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA. Electronic address:

Published: October 2020

AI Article Synopsis

  • Protein interactions between voltage-gated sodium channels and accessory proteins like FGF14 are crucial for neuronal activity, yet few kinases regulating these interactions have been identified.
  • The study utilized high-throughput screening to identify compounds affecting the FGF14: Nav1.6 complex, focusing on the role of the kinase JAK2.
  • Findings indicate that JAK2 modulates FGF14's ability to interact with Nav1.6, affecting neuronal firing rates, highlighting a new mechanism where JAK2 influences neuronal plasticity through its regulation of FGF14 dimerization.

Article Abstract

Background: Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons.

Methods: Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology.

Results: Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14 mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14.

Conclusions: These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984254PMC
http://dx.doi.org/10.1016/j.bbamcr.2020.118786DOI Listing

Publication Analysis

Top Keywords

channel function
8
fgf14
8
firing plasticity
8
compounds targeting
8
fgf14 homodimerization
8
jak2
7
nav16
5
jak2 regulates
4
regulates nav16
4
nav16 channel
4

Similar Publications

Piezo1 Enhances Macrophage Phagocytosis and Pyrin Activation to Ameliorate Fungal Keratitis.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: Fungal keratitis (FK) remains a treatment challenge, necessitating new therapeutic targets. Piezo1, a mechanosensitive ion channel, regulates calcium signaling and immune cell function. This study investigates its role in macrophage-mediated antifungal responses in FK.

View Article and Find Full Text PDF

The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.

View Article and Find Full Text PDF

Sleep stages classification one of the essential factors concerning sleep disorder diagnoses, which can contribute to many functional disease treatments or prevent the primary cognitive risks in daily activities. In this study, A novel method of mapping EEG signals to music is proposed to classify sleep stages. A total of 4.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

The sensation of sng (pronounced/səŋ/, the Romanization form of or soreness in Taiwanese Southern Min) associated with a composite of unique sensations, is a novel phenotype for acupoint stimulation. It is perceived by test participants but also by experienced practitioners as a sensation of "taking the bait" (by fish when fishing), a characteristic heavy and tight sensation from the needle. Here, we propose that sng is a powerful biomarker for associated with successful manual acupuncture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!