Dramatic decrease of laboratory-confirmed influenza A after school closure in response to COVID-19.

Pediatr Pulmonol

Department of Pathology and Laboratory Medicine, Division of Microbiology, Sidra Medicine, Qatar Foundation, Doha, Qatar.

Published: September 2020

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361779PMC
http://dx.doi.org/10.1002/ppul.24933DOI Listing

Publication Analysis

Top Keywords

dramatic decrease
4
decrease laboratory-confirmed
4
laboratory-confirmed influenza
4
influenza school
4
school closure
4
closure response
4
response covid-19
4
dramatic
1
laboratory-confirmed
1
influenza
1

Similar Publications

Background:  Circulating tumor cells and clusters (CTC) from soft-tissue sarcoma (STS) that become entrapped in the lung can form micro-metastases and lead to pulmonary metastatic disease. Many patients with localized high-risk STS later develop metastases. Radiation is effective at reducing local recurrence by eradicating microscopic infiltration and satellites in the reactive zone surrounding the primary tumor.

View Article and Find Full Text PDF

Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.

View Article and Find Full Text PDF

Sleep-wake disorders are recognized as one of the earliest symptoms of Alzheimer disease (AD). Accumulating evidence has highlighted a significant association between sleep-wake disorders and AD pathogenesis, suggesting that sleep-wake modulation could be a promising approach for postponing AD onset. The suprachiasmatic nucleus (SCN) and the pineal hormone melatonin are major central modulating components of the circadian rhythm system.

View Article and Find Full Text PDF

Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.

View Article and Find Full Text PDF

Background: Skin melanoma is a highly metastatic cancer with an increasing global incidence. Despite advancements in immunotherapy, new treatment strategies based on tumor biology are essential for improving outcomes and developing novel therapies. Autophagy plays a critical role in melanoma cell metabolism and affects the tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!