Background: Psoriasis is an autoimmune disease of the skin with lapsing episodes of hyperkeratosis, irritation, and inflammation. Numerous traditional and novel drug delivery systems have been used for better penetration through psoriatic barrier cells and also for retention in the skin. As there is no effective remedy for better penetration, and retention is there because of the absence of an ideal carrier for effective and safe delivery of antipsoriatic drugs.

Objectives: The main objective of this project is to develop a Squalene integrated NLC based carbopol 940 gel to create a local drug depot in the skin for improved efficacy against psoriasis.

Methods: Homogenization method is used for the formulation of Nanostructured Lipid Carrier, which was characterized on the basis of size, entrapment efficiency, polydispersity index (PDI), viscosity, spreadability, DSC, zeta potential, % in vitro release, in vitro skin permeation and retention studies, physical storage stability studies. In vivo studies can use other alternative models for induction of psoriasis by severe redness, swelling macroscopically, and microvascular dilation edema lasting for 10 days. Furthermore, histopathology study was done to asses changes in the skin.

Conclusion: The optimized formulation of nanostructured lipid carrier-based gel has shown significant and sustained release of clobetasol propionate. Furthermore, this formulation has also shown retention in skin because of squalene as it is a sebum derived lipid, which shows an affinity towards the sebaceous gland.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1874467213666200628135552DOI Listing

Publication Analysis

Top Keywords

nanostructured lipid
12
clobetasol propionate
8
lipid carrier-based
8
carrier-based gel
8
better penetration
8
retention skin
8
formulation nanostructured
8
skin
5
development characterization
4
characterization clobetasol
4

Similar Publications

Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery.

Nat Commun

December 2024

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.

Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Introduction: Dozens of vaccines have been approved or authorized internationally in response to the ongoing SARS-CoV-2 pandemic, covering a range of modalities and routes of delivery. For example, mucosal delivery of vaccines via the intranasal (i.n.

View Article and Find Full Text PDF

Introduction: The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs).

View Article and Find Full Text PDF

Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.

Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!