A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of Phenotype Microarray for Profiling Carbon Sources Utilization between Biofilm and Non-Biofilm of Pseudomonas aeruginosa from Clinical Isolates. | LitMetric

Application of Phenotype Microarray for Profiling Carbon Sources Utilization between Biofilm and Non-Biofilm of Pseudomonas aeruginosa from Clinical Isolates.

Curr Pharm Biotechnol

Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Published: January 2021

Background: This is the fastest work in obtaining the metabolic profiles of Pseudomonas aeruginosa in order to combat the infection diseases which leads to high morbidity and mortality rates. Pseudomonas aeruginosa is a high versatility of gram-negative bacteria that can undergo aerobic and anaerobic respiration. Capabilities in deploying different carbon sources, energy metabolism and regulatory system, ensure the survival of this microorganism in the diverse environment condition. Determination of differences in carbon sources utilization among biofilm and non-biofilm of Pseudomonas aeruginosa provides a platform in understanding the metabolic activity of the microorganism.

Methods: The study was carried out from September 2017 to February 2019. Four archive isolates forming strong and intermediate biofilm and non-biofilms producer were subcultured from archive isolates. ATCC 27853 P. aeruginosa was used as a negative control or non-biofilm producing microorganism. Biofilm formation was confirmed by Crystal Violet Assay (CVA) and Congo Red Agar (CRA). Metabolic profiles of the biofilm and non-biofilms isolates were determined by phenotype microarrays (Biolog Omnilog).

Results And Discussion: In this study, Pseudomonas aeruginosa biofilm isolates utilized uridine, L-threonine and L-serine while non-biofilm utilized adenosine, inosine, monomethyl, sorbic acid and succinamic acid.

Conclusion: The outcome of this result will be used for future studies to improve detection or inhibit the growth of P. aeruginosa biofilm and non-biofilm respectively.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389201021666200629145217DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa
20
carbon sources
12
biofilm non-biofilm
12
sources utilization
8
utilization biofilm
8
non-biofilm pseudomonas
8
metabolic profiles
8
archive isolates
8
biofilm non-biofilms
8
aeruginosa biofilm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!