Extended Model for Filtration in Gasoline Particulate Filters under Practical Driving Conditions.

Environ Sci Technol

Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.

Published: August 2020

In order to reliably predict the particle number filtration of gasoline particulate filters (GPF) under practical driving conditions, an extension to established filtration models is developed. For the validation of this approach and in order to close a gap of available measurement data at high space velocity in the literature, the particle-size-resolved fresh filtration efficiency of seven different cordierite filters is determined experimentally. Moreover, the experiments on a dynamic engine test bench focus on the impact of the pore-size distribution and the filter wall thickness under steady-state as well as transient, cold-start conditions. In order to model all trends observed, a new correlation for the particle collection due to inertial deposition is proposed and embedded in a heterogeneous multiscale model framework for a GPF. The presented approach can predict all trends observed in the measurements, including a stabilization of the filtration efficiency with increasing space velocities above a certain level. A comparison of several modeling approaches reveals the partly different behaviors at varying space velocities for the here presented model as well as for established filtration models.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c02487DOI Listing

Publication Analysis

Top Keywords

filtration gasoline
8
gasoline particulate
8
particulate filters
8
practical driving
8
driving conditions
8
conditions order
8
established filtration
8
filtration models
8
filtration efficiency
8
trends observed
8

Similar Publications

This study utilized grab and strip testing methods to examine the relationship between three weave structures-plain, twill, and satin-and their tensile strengths in both warp and weft directions. In addition, microplastic fiber (MPF) emissions from these three weave structures were quantified at different states of the laundry process using filtration and microscopy. The grab and strip tests revealed that twill- and satin-woven fabrics exhibited higher tensile strengths in the warp direction compared to the weft orientation.

View Article and Find Full Text PDF

A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.

View Article and Find Full Text PDF

Offshore low-permeability reservoirs are mainly composed of complex fault-block structures with poor physical properties, which makes establishing an effective displacement relationship particularly challenging. Hydraulic fracturing assisted oil displacement (HFAD) can effectively increase the oil production of a single well by creating fractures to replenish the producing energy. In this study, the Khristianovich-Geertsma-de Klerk (KGD) model is used to calculate the propagation of vertical fractures, and the flow tube method is used to calculate the two-phase oil-water flow in filtration and seepage.

View Article and Find Full Text PDF

For the purpose of efficient temporary plugging and self-removal of the plugging of reservoir formations, the thermally induced expandable and acid-generating temporary plugging agent (TAPA) was prepared with acrylonitrile (AN), methacrylic acid (MAA), ,-dimethylacrylamide (DMAA), and butyl acrylate (BA) as the shell monomers as well as the carboxylate esters with high boiling points as the core material. The TAPA was structurally characterized, and the properties were studied. The results showed that the TAPA had a good spherical structure with a median particle size (D50) of 16.

View Article and Find Full Text PDF

For optimizing the drilling efficiency, nanoparticles (NPs) specifically nanometal oxides have been used in water-based drilling fluids (WBDF). Nano metal oxides improve the rheological and filtration characteristics of the WBDF. However, dispersion instability among pristine nano metals shrinks the performance of the nanometal oxides due to high surface energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!