Root vascular pathogens are some of the world's most devastating plant pathogens. However, the methods used to determine plant susceptibility to this class of pathogen are laborious, variable, and in most cases qualitative. Here we present a rapid, simple, and robust infection assay for the characterization of Arabidopsis thaliana resistance to the fungal root pathogen Fusarium oxysporum. The method utilizes fungal root vascular penetrations and fungal-induced root growth inhibition to deliver a quantitative assessment of plant susceptibility with spatial and temporal resolution. These plant susceptibility indicators are paired with a semiautomated data analysis pipeline to deliver a reproducible assessment of plant susceptibility to root vascular pathogens such as F. oxysporum. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Arabidopsis thaliana plate infection assay using fluorescently labeled Fusarium oxysporum Support Protocol 1: Preparation of A. thaliana germination plates Support Protocol 2: Preparation of the F. oxysporum culture Basic Protocol 2: Data acquisition of F. oxysporum plant infection assay Support Protocol 3: Acquiring root growth inhibition data using Fiji.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cppb.20113 | DOI Listing |
PLoS One
January 2025
Wolaita Sodo University, Sodo, South Ethiopian Region, Ethiopia.
Smallholder wheat farmers of Ethiopia frequently use landraces as seed sources that are low yielders and susceptible to diseases due to shortage of seeds of adapted improved bread wheat varieties. Developing novel improved varieties with wider adaptability and stability is necessary to maximize the productivity of bread wheat. Hence, a multi-location field trial was conducted across four locations in south Ethiopia during the 2022/23 main cropping season with the objective of estimating the magnitude of genotype by environment interaction (GEI) effect, and determine the stable genotype among the 10 Ethiopian bread wheat advanced selections using a randomized complete block design (RCBD) with three replications.
View Article and Find Full Text PDFPlant Dis
January 2025
No. 483, Wushan Road, Tianhe District,Guangzhou, China, 510642;
Pitaya canker disease, caused by , is the primary threat to pitaya cultivation, significantly compromising fruit quality and reducing yield. WRKY transcription factors are essential regulators in plant pathogen recognition and defense mechanisms, yet their specific roles in the development of pitaya canker disease remain largely unexplored. In this study, five genes (, , , , and ) associated with pitaya canker disease were identified through RNA-Seq analysis.
View Article and Find Full Text PDFTree Physiol
January 2025
Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Plant Protection, Southwest University, Chongqing, China.
Introduction: Native endophytic microorganisms in tobacco seeds are closely related to their resistance to () infections. However, the role of the native seed core microbiome in the suppression of bacterial wilt disease (BWD) remains underexplored.
Methods: The characteristics of endophytic bacterial communities in both resistant and susceptible tobacco varieties were characterized using high-throughput sequencing technology.
BMC Plant Biol
January 2025
Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan.
Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!