AI Article Synopsis

  • The tench (Tinca tinca) is a freshwater fish with a growing interest in aquaculture and various human-induced movements across regions, yet lacks detailed genetic information.
  • Analysis of mitochondrial DNA from 50 tench individuals across five European populations revealed two distinct phylogroups and greater genetic variability than previously documented, along with a hybridization zone in the Danube River.
  • Additional genetic tests indicate a complex structure in both wild and moved tench populations, which will aid in developing better breeding practices in the future.

Article Abstract

The tench Tinca tinca is a freshwater species with human-mediated translocations, aquaculture interest and limited information on its genetic structure. mtDNA sequencing analysis of control region and two genes in 50 individuals from five European populations identified two phylogroups, with greater variability than that reported until now, and a hybridization zone in the Danube River region. Restriction analyses of additional samples reveal the complicated genetic structure characteristics of tench's wild and translocated populations, supporting future breeding practices.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfb.14448DOI Listing

Publication Analysis

Top Keywords

genetic structure
12
tench tinca
8
tinca tinca
8
european populations
8
structure divergence
4
divergence tench
4
tinca
4
tinca european
4
populations tench
4
tinca freshwater
4

Similar Publications

Background: Caryophyllaceae contains 100 genera and 3000 species, many of which are valuable both ecologically and economically. However, as past research has shown, the fundamental phylogenetic relationships of Caryophyllaceae are still debatable, and molecular dating based on chloroplast genomes has not been thoroughly examined for the entire family.

Methods: In this study, the complete chloroplast genome sequences of Arenaria kansuensis Maxim.

View Article and Find Full Text PDF

Genome-wide identification, classification, and expression profiling of LAC gene family in sesame.

BMC Plant Biol

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.

Background: Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop.

View Article and Find Full Text PDF

Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China.

BMC Genomics

December 2024

The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China.

The H3 subtype of avian influenza virus (AIV) stands out as one of the most prevalent subtypes, posing a significant threat to public health. In this study, a novel triple-reassortant H3N3 AIV designated A/chicken/China/16/2023 (H3N3), was isolated from a sick chicken in northern China. The complete genome of the isolate was determined using next-generation sequencing, and the AIV-like particles were confirmed via transmission electron microscopy.

View Article and Find Full Text PDF

Patients with multiple sclerosis (MS) face a heightened risk of developing chronic obstructive pulmonary disease (COPD). Despite this widely reported association, the pathogenic contributors and processes that may favor the development of COPD in MS patients have yet to be identified. Recent studies have suggested peripheral blood leukocytes as a potential link between COPD and autoimmune disorders.

View Article and Find Full Text PDF

Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!