Atmospheric CO2 is one of the main components of the greenhouse effect. To overcome this problem there are ongoing efforts to convert CO2 to some other useful and harmless products. The capture, activation and dissociation of CO2 are the preliminary steps in this process. In an effort to understand the role of surface composition and structure in CO2 adsorption and dissociation, in this work, with the help of first principles density functional theory based calculations, we have studied the same on the {100} surface of cubic Ti2C and MXene (also the {0001} surface of trigonal Ti2C). Our results show that CO2 undergoes barrierless chemisorption on both of these surfaces with a preference towards {100} cubic Ti2C. We attribute the reason for this to a lower value of the work function of the {100} surface. Furthermore, on MXene, the barrier for CO2 dissociation is lower compared to that on the {100} surface. Coverage dependent CO2 chemisorption studies on these two surfaces show that on the Ti2C surface the CO2 molecules form clusters around the C-vacancies while on MXene they are uniformly spread on the surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp01700k | DOI Listing |
Environ Technol
January 2025
Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).
View Article and Find Full Text PDFJ Mol Model
January 2025
State Key Laboratory of Polyolefins and Catalysis, Shanghai, 200062, People's Republic of China.
Context: This study aims to reveal the reaction mechanisms of H and O on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H and O react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.
Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!