Understanding surface charge regulation in silica nanopores.

Phys Chem Chem Phys

State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Published: July 2020

Nanoporous silica is used in a wide variety of applications, ranging from bioanalytical tools and materials for energy storage and conversion as well as separation devices. The surface charge density of nanopores is not easily measured by experiment yet plays a vital role in the performance and functioning of silica nanopores. Herein, we report a theoretical model to describe charge regulation in silica nanopores by combining the surface-reaction model and the classical density functional theory (CDFT). The theoretical predictions provide quantitative insights into the effects of pH, electrolyte concentration, and pore size on the surface charge density and electric double layer structure. With a fixed pore size, the surface charge density increases with both pH and the bulk salt concentration similar to that for an open surface. At fixed pH and salt concentration, the surface charge density rises with the pore size until it reaches the bulk asymptotic value when the surface interactions become negligible. At high pH, the surface charge density is mainly determined by the ratio of the Debye screening length to the pore size (λ/D).

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp02152kDOI Listing

Publication Analysis

Top Keywords

surface charge
24
charge density
20
pore size
16
silica nanopores
12
charge regulation
8
regulation silica
8
size surface
8
salt concentration
8
charge
7
surface
7

Similar Publications

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release.

Pharmaceutics

January 2025

Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.

Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Cationic Cyclodextrin-Based Carriers for Drug and Nucleic Acid Delivery.

Pharmaceutics

January 2025

Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.

Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.

View Article and Find Full Text PDF

Liposomal Formulations: A Recent Update.

Pharmaceutics

December 2024

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India.

Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use.

View Article and Find Full Text PDF

: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!