A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single Cell Collection of Trophoblast Cells in Peri-implantation Stage Human Embryos. | LitMetric

Human implantation, the apposition and adhesion to the uterine surface epithelia and subsequent invasion of the blastocyst into the maternal decidua, is a critical yet enigmatic biological event that has been historically difficult to study due to technical and ethical limitations. Implantation is initiated by the development of the trophectoderm to early trophoblast and subsequent differentiation into distinct trophoblast sublineages. Aberrant early trophoblast differentiation may lead to implantation failure, placental pathologies, fetal abnormalities, and miscarriage. Recently, methods have been developed to allow human embryos to grow until day 13 post-fertilization in vitro in the absence of maternal tissues, a time-period that encompasses the implantation period in humans. This has given researchers the opportunity to investigate human implantation and recapitulate the dynamics of trophoblast differentiation during this critical period without confounding maternal influences and avoiding inherent obstacles to study early embryo differentiation events in vivo. To characterize different trophoblast sublineages during implantation, we have adopted existing two-dimensional (2D) extended culture methods and developed a procedure to enzymatically digest and isolate different types of trophoblast cells for downstream assays. Embryos cultured in 2D conditions have a relatively flattened morphology and may be suboptimal in modeling in vivo three-dimensional (3D) embryonic architectures. However, trophoblast differentiation seems to be less affected as demonstrated by anticipated morphology and gene expression changes over the course of extended culture. Different trophoblast sublineages, including cytotrophoblast, syncytiotrophoblast and migratory trophoblast can be separated by size, location, and temporal emergence, and used for further characterization or experimentation. Investigation of these early trophoblast cells may be instrumental in understanding human implantation, treating common placental pathologies, and mitigating the incidence of pregnancy loss.

Download full-text PDF

Source
http://dx.doi.org/10.3791/61476DOI Listing

Publication Analysis

Top Keywords

trophoblast cells
12
human implantation
12
early trophoblast
12
trophoblast sublineages
12
trophoblast differentiation
12
trophoblast
11
human embryos
8
placental pathologies
8
methods developed
8
extended culture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!