In utero electroporation is an in vivo DNA transfer technique extensively used to study the molecular and cellular mechanisms underlying mammalian corticogenesis. This procedure takes advantage of the brain ventricles to allow the introduction of DNA of interest and uses a pair of electrodes to direct the entrance of the genetic material into the cells lining the ventricle, the neural stem cells. This method allows researchers to label the desired cells and/or manipulate the expression of genes of interest in those cells. It has multiple applications, including assays targeting neuronal migration, lineage tracing, and axonal pathfinding. An important feature of this method is its temporal and regional control, allowing circumvention of potential problems related with embryonic lethality or the lack of specific CRE driver mice. Another relevant aspect of this technique is that it helps to considerably reduce the economic and temporal limitations that involve the generation of new mouse lines, which become particularly important in the study of interactions between cell types that originate in distant areas of the brain at different developmental ages. Here we describe a double electroporation strategy that enables targeting of cell populations that are spatially and temporally separated. With this approach we can label different subtypes of cells in different locations with selected fluorescent proteins to visualize them, and/or we can manipulate genes of interest expressed by these different cells at the appropriate times. This strategy enhances the potential of in utero electroporation and provides a powerful tool to study the behavior of temporally and spatially separated cell populations that migrate to establish close contacts, as well as long-range interactions through axonal projections, reducing temporal and economic costs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/61046 | DOI Listing |
Cancer Res
January 2025
Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
Mouse models that faithfully represent the biology of human brain tumors are critical tools for unraveling the underlying tumor biology and screening for potential precision therapies. This is especially true of rare tumor types, many of which have correspondingly few xenograft or cell lines available. Although our understanding of the specific biological pathways driving cancer has improved significantly, identifying the appropriate progenitor populations to drive oncogenic processes represents a significant barrier to efficient mouse model production.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
StarTrack is a powerful multicolor genetic tool designed to unravel cellular lineages arising from neural progenitor cells (NPCs). This innovative technique, based on retrospective clonal analysis and built upon the PiggyBac system, creates a unique and inheritable "color code" within NPCs. Through the stochastic integration of 12 distinct plasmids encoding six fluorescent proteins, StarTrack enables precise and comprehensive tracking of cellular fates and progenitor potentials.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute for Neuroscience of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France.
Multicolor MAGIC Markers strategies are useful lineage tracing tools to study brain development at a multicellular scale. In this chapter, we describe an in utero electroporation method to simultaneously label multiple neighboring progenitors and their respective progeny using these multicolor reporters. In utero electroporation enables the introduction of any gene of interest into embryonic neural progenitors lining the brain ventricles through a simple pipeline consisting of a micro-injection followed by the application of electrical pulses.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Neural precursor cells (NPCs) are a group of cells with self-renewal and multi-differentiation potential. MicroRNAs are required for neurogenesis in the central nervous system (CNS). Recent reports suggest that miR-1224 is important in human CNS diseases.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan.
Growth-associated protein 43 (GAP43) is a membrane-associated phosphoprotein predominantly expressed in the nervous systems, and controls axonal growth, branching, and pathfinding. While the association between GAP43 and human neurological disorders have been reported, the underlying mechanisms remain largely unknown. We performed whole exome sequencing on a patient with intellectual disability (ID), neurodevelopmental disorders, short stature, and skeletal abnormalities such as left-right difference in legs and digital deformities, and identified a heterozygous missense variation in the GAP43 gene [NM_001130064.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!