Autopsy study of a 49-year-old patient demonstrates a rare kidney tumor that had a structure of a mesenchymal renomedullary interstitial tumor (RIO), which had specific characteristics. They include a predominance of the cellular component in the tumor, represented by cells with processes elements (fibroblasts, myofibroblasts), which were surrounded by collagen fibers of interstitium. Apparently, these cells can be involved in the regulation of renin and bicarbonates, the exchange of components of connective tissue (collagen fibers, proteoglycans) and hormones (estrogen, progesterone). Since these tumor cells regulate the synthesis and secretion of the substances, numerous clinical manifestations of RIO can be explained. Most likely, these include increased blood pressure, water-electrolyte disorders, hormonal disorders due to the presence of estrogen receptors, progesterone in the tumor tissue and metabolic disorders (diabetes mellitus). However, these assumptions require further clinical, morphological and immunohistochemical studies.

Download full-text PDF

Source

Publication Analysis

Top Keywords

collagen fibers
8
progesterone tumor
8
tumor
6
[renomedullary interstitial
4
interstitial cell
4
cell tumor
4
tumor review
4
review rare
4
rare clinical
4
clinical case]
4

Similar Publications

Fabrication and applications of biofunctional collagen biomaterials in tissue engineering.

Int J Biol Macromol

January 2025

Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia. Electronic address:

Collagen is extensively used in tissue engineering for various organ tissue regeneration due to the main component of human organ extracellular matrix (ECM) and their inherent nature bioactivity. Collagen various types naturally exist in different organ ECMs. Collagen fabricated with natural ECM mimics architecture, composition and mechanical properties for various organ tissue regeneration.

View Article and Find Full Text PDF

Subcritical water hydrolysis of eggshell membrane and its physicochemical characteristics.

Food Chem

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, PR China. Electronic address:

The insolubility of eggshell membrane (ESM) limits it application. This study utilized a green process subcritical water (SW), to prepare soluble ESM and compared it with acid hydrolysis. The effect of SW temperature on the yields of total protein, free amino acids, and glycosaminoglycan in the hydrolysate was investigated.

View Article and Find Full Text PDF

Leveraging the nanotopography of filamentous fungal chitin-glucan nano/microfibrous spheres (FNS) coated with collagen (type I) for scaffolded fibroblast spheroids in regenerative medicine.

Tissue Cell

January 2025

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:

Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.

View Article and Find Full Text PDF

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Current understanding of the histology of the dermoskeleton of tetrapods comes from fossilized and recent remains of skulls, osteoderms, carapace, plastron and other postcranial material which were always investigated using linear cross polarized light (LCPL) microscopy. The pectoral girdle of vast majority of non-amniote tetrapods, including temnospondyls evolved large ventrally located dermal bones- the interclavicle and a pair of clavicles. Despite that, there is a lack of information about the bone tissue structure from these postcranial dermal bones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!