There is still no conclusion on the potential effect of the rs2295080 and rs2536 polymorphisms of mTOR (mammalian target of rapamycin) gene on different cancers. Herein, we performed a comprehensive assessment using pooled analysis, FPRP (false-positive report probability), TSA (trial sequential analysis), and eQTL (expression quantitative trait loci) analysis. Eighteen high-quality articles from China were enrolled. The pooled analysis of rs2295080 with 9502 cases and 10,965 controls showed a decreased risk of urinary system tumors and specific prostate cancers [TG vs. TT, TG+GG vs. TT and G vs. T; P<0.05, OR (odds ratio) <1]. FPRP and TSA data further confirmed these results. There was an increased risk of leukemia [G vs. T, GG vs. TT, and GG vs. TT+TG genotypes; P<0.05, OR>1]. The eQTL data showed a potential correlation between the rs2295080 and mTOR expression in whole blood samples. Nevertheless, FPRP and TSA data suggested that more evidence is required to confirm the potential role of rs2295080 in leukemia risk. The pooled analysis of rs2536 (6653 cases and 7025 controls) showed a significant association in the subgroup of "population-based" control source via the allele, heterozygote, dominant, and carrier comparisons (P<0.05, OR>1). In conclusion, the TG genotype of mTOR rs2295080 may be linked to reduced susceptibility to urinary system tumors or specific prostate cancers in Chinese patients. The currently data do not strongly support a role of rs2295080 in leukemia susceptibility. Large sample sizes are needed to confirm the potential role of rs2536 in more types of cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350887 | PMC |
http://dx.doi.org/10.1042/BSR20191825 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!