Inspired by metalloporphyrin-based enzymes, a biomimetic catalyst, R-N-Fe, was prepared by grafting iron phthalocyanine (FePc) covalently onto a macroporous chloromethylated polystyrene-divinylbenzene resin (R), which was pre-functionalized using 4-aminopyridine (4-ampy) as an axial ligand. The novel catalyst was used for the degradation of oxytetracycline hydrochloride (OTCH). The response surface methodology was employed to optimize the independent operating parameters, including temperature, catalyst amount, HO dosage, and initial pH value. The results displayed that the initial pH and temperature had the most significant effect on the removal efficiency. Under optimum conditions, the OTCH removal efficiency was 93.98%. Additionally, the classical quenching experiment and electron paramagnetic resonance (EPR) test indicated that R-N-Fe could generate hydroxyl radicals by decomposing HO, which was the main active species for eliminating OTCH. Furthermore, R-N-Fe can be easily recycled and can maintain high stability in the reusability test, rendering it a good potential for practical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2020.229 | DOI Listing |
Sci Rep
January 2025
Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico.
It was a general belief that drug resistance in Mycobacterium tuberculosis (Mtb) was associated with lesser virulence, particularly rifampicin resistance, which is usually produced by mutations in the RNA polymerase Beta subunit (RpoB). Interestingly, this kind of bacterial mutations affect gene transcription with significant effects on bacterial physiology and metabolism, affecting also the bacterial antigenic constitution that in consequence can produce diverse immune responses and disease outcome. In the present study, we show the results of the Mtb clinical isolate A96, which is resistant to rifampicin and when used to infect BALB/c mice showed hypervirulence, apparently by rapidly polarization of the Th2 immune response through early and high production of IL-4.
View Article and Find Full Text PDFQuantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA.
Polymeric nanoparticles (NPs) are promising tools used for immunomodulation and drug delivery in various disease contexts. The interaction between NP surfaces and plasma-resident biomolecules results in the formation of a biomolecular corona, which varies patient-to-patient and as a function of disease state. This study investigates how the progression of acute systemic inflammatory disease influences NP corona compositions and the corresponding effects on innate immune cell interactions, phenotypes, and cytokine responses.
View Article and Find Full Text PDFMucosal Immunol
January 2025
International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China. Electronic address:
Carbohydr Polym
March 2025
Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China. Electronic address:
The limited membrane permeability and bacterial resistance pose significant challenges in the management of intracellular drug-resistant bacterial infections. To overcome this issue, we developed a bacterial-targeted drug delivery system based on quaternary ammonium chitosan-modified mesoporous silica nanoparticles (MSN-NH-CFP@HACC) for the treatment of intracellular Methicillin-resistant Staphylococcus aureus (MRSA) infections. This system utilizes amino-functionalized mesoporous silica nanoparticles to efficiently load cefoperazone (CFP), and the nanoparticles' surface is coated with 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) to target bacteria and enhance macrophage uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!