Deformable nanovesicles (DNVs) have been used in the buccal delivery of biomacromolecules due to their ability to enhance drug penetration. However, no breakthroughs have been made until now due to limited understanding of the factors affecting buccal delivery. In this study, we designed a series of DNVs, based on an insulin-phospholipid complex (IPC-DNVs), to investigate the influence of drug dose, buccal administration methods, and key quality characteristics of IPC-DNVs for buccal delivery. IPC-DNVs showed a non-linear dose-response relationship between 8 and 12 IU. There was no significant effect of drug delivery site (sublingual mucosa/buccal mucosa) or ligation time (15 or 30 min) on buccal absorption of IPC-DNVs. However, the area above the curve of reduction in blood glucose level overtime (AAC) for oral mucosa administration was significantly higher than that for buccal mucosa administration. Increasing the drug concentration in IPC-DNVs led to a decrease in AAC. This might be due to local leakage of DNVs, while squeezing through biological barriers with high concentration of insulin, thus hindering the subsequent delivery of DNVs. IPC-DNVs, measuring 80-220 nm in size, did not significantly affect AAC. However, when the size was increased to approximately 400 nm, AAC decreased, thus suggesting that IPC-DNVs with reasonable size were more effective. Additionally, increased deformability of IPC-DNVs might cause drugs to leak easily, thus reducing the promoting effect of buccal absorption. Our results clarified the effect of characteristics of IPC-DNVs on buccal delivery and provided meaningful support for the design of dosage form of DNVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216447 | PMC |
http://dx.doi.org/10.1080/10717544.2020.1778814 | DOI Listing |
Pharmaceutics
December 2024
Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK.
Buccal drug delivery emerges as a promising strategy to enhance the absorption of drugs classified under the Biopharmaceutics Classification System (BCS) Class III, characterized by high solubility and low permeability. However, addressing the absorption challenges of BCS Class III drugs necessitates innovative formulation strategies. This review delves into optimizing buccal drug delivery for BCS III drugs, focusing on various formulation approaches to improve absorption.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
Cellulose acetate butyrate is a biodegradable cellulose ester bioplastic produced from plentiful natural plant-based resources. Solvent-exchange-induced in situ gels are particularly promising for periodontitis therapy, as this dosage form allows for the direct delivery of high concentrations of antimicrobial agents to the localized periodontal pocket. This study developed an in situ gel for periodontitis treatment, incorporating a combination of metronidazole and doxycycline hyclate, with cellulose acetate butyrate serving as the matrix-forming agent.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary.
Background/objectives: Films in the mouth offer a promising alternative drug delivery system for oral administration, with several advantages over traditional oral formulations. Furthermore, their non-invasive nature and easy administration make them conducive to increasing patient compliance. The use of active agents in these films can further improve their drug delivery properties, making them an even more useful drug delivery system.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:
The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.
View Article and Find Full Text PDFGels
December 2024
The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel.
Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier's permeability remains challenging. This study explores the effects of ethanolic extracts from (CM), (CMC), and (ORD) on buccal epithelium permeability in vitro using a TR146 cell-based model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!