Conditions predict heightened Hendra virus spillover risk in horses this winter: actions now can change outcomes.

Aust Vet J

Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia.

Published: June 2020

Download full-text PDF

Source
http://dx.doi.org/10.1111/avj.12964DOI Listing

Publication Analysis

Top Keywords

conditions predict
4
predict heightened
4
heightened hendra
4
hendra virus
4
virus spillover
4
spillover risk
4
risk horses
4
horses winter
4
winter actions
4
actions change
4

Similar Publications

Gastric Cancer Models Developed via GelMA 3D Bioprinting Accurately Mimic Cancer Hallmarks, Tumor Microenvironment Features, and Drug Responses.

Small

January 2025

Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.

Current in vitro models for gastric cancer research, such as 2D cell cultures and organoid systems, often fail to replicate the complex extracellular matrix (ECM) found in vivo. For the first time, this study utilizes a gelatin methacryloyl (GelMA) hydrogel, a biomimetic ECM-like material, in 3D bioprinting to construct a physiologically relevant gastric cancer model. GelMA's tunable mechanical properties allow for the precise manipulation of cellular behavior within physiological ranges.

View Article and Find Full Text PDF

Background: In the intensive care unit (ICU), complex medical conditions require specialized care; the threat of antibiotic resistance is significant due to frequent antibiotic use. This study investigates the pivotal role of culture sensitivity testing in shaping antibiotic prescription practices and patient outcomes in ICUs.

Materials And Methods: By using a prospective observational-analytical design, medical data from 640 patients at a Karachi hospital for one year in 2022 were utilized.

View Article and Find Full Text PDF

Background: Transvenous lead extraction (TLE) has become an essential component of lead management strategies, but it carries the risk of severe complications, including damage to the tricuspid valve. Currently, there are no established predictors that can help prevent these complications.

Case Summary: An 84-year-old male with a dual-chamber pacemaker was admitted to the hospital due to a pocket fistula resulting from a local infection.

View Article and Find Full Text PDF

Developing high-performance alloys is essential for applications in advanced electromagnetic energy conversion devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through a machine learning (ML) framework, which used both multi-property ML models and multi-objective Bayesian optimization to design compositions with predicted high values of saturation magnetization, Curie temperature, and Vickers hardness. Experimental validation was conducted on two promising compositions synthesized using three different methods: arc melting, ball milling followed by spark plasma sintering (SPS), and chemical synthesis followed by SPS.

View Article and Find Full Text PDF

Large-scale production of infective larvae from engorged .

Front Trop Dis

December 2024

Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.

Background: is transmitted by species and affects hundred millions of inhabitants in about 33 countries in sub-Saharan Africa. It is known that Mansonellosis due to do not result in a clear clinical picture, but down-regulates the immunity of patients predisposing them to other diseases like tuberculosis, HIV and malaria or damping vaccine efficacy. However, research about novel drugs against this filarial nematode is missing because of the lack of parasite material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!