Our previous studies have been focused on the design, optimization and manufacture of a partially resorbable composite bone plate consisting of a poly l-lactic acid matrix reinforced with braided fabrics bioactive glass fibers (PLLA/BG). In the present study, the response of the composite samples, the degradation rate, the inflammatory response, fibrous capsule formation and tissue-implant bonding to the in-vivo environment were assessed via implantation in the rabbit subcutaneous tissue. Despite the presence of both enzymatic degradation and hydrolysis processes within the body, the rate of the molecular weight loss as an indicator of degradation did not show a significant difference with the in-vitro conditions. It was predicted that strength loss would show the same trend since it was a consequence of molecular chain disruption and the loss of molecular weight. Inexistence of chronic inflammation, as confirmed by our previous results on the controlled degradation rate, also showed the maintenance of the physiological pH in the peripheral environment of the implant. Moreover, lack of the fibrous capsule tissue around the implant indicated that the implant was bioactive. In addition, given the composition of the bioactive glass fibers, that could be bonded to soft and hard tissues, tissue bonding with the PLLA/BG composite samples was also observed, thereby confirming the bioactivity and biocompatibility of the proposed bone plate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-020-06394-6DOI Listing

Publication Analysis

Top Keywords

bioactive glass
12
glass fibers
12
partially resorbable
8
poly l-lactic
8
bone plate
8
composite samples
8
degradation rate
8
fibrous capsule
8
molecular weight
8
in-vivo evaluation
4

Similar Publications

Bone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium-silver (Ce-Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol-gel Stöber method to synthesize doped BBGs based on S49B4.

View Article and Find Full Text PDF

This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO/CaO content, generating MBG with surface areas of 60-695 m/g.

View Article and Find Full Text PDF

3D-Printed Acrylated Soybean Oil Scaffolds with Vitrimeric Properties Reinforced by Tellurium-Doped Bioactive Glass.

Polymers (Basel)

December 2024

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

In this study, we present novel, vitrimeric and biobased scaffolds that are designed for hard tissue applications, composed of acrylated, epoxidized soybean oil (AESO) and reinforced with bioactive glass that is Tellurium doped (BG-Te) and BG-Te silanized, to tune the mechanical and antibacterial properties. The manufacture's method consisted of a DLP 3D-printing method, enabling precise resolution and the possibility to manufacture a hollow and complex structure. The resin formulation was optimized with a biobased, reactive diluent to adjust the viscosity for an optimal 3D-printing process.

View Article and Find Full Text PDF

An Enhanced Bioactive Glass Composition with Improved Thermal Stability and Sinterability.

Materials (Basel)

December 2024

Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy.

The development of new bioactive glasses (BGs) with enhanced bioactivity and improved resistance to crystallization is crucial for overcoming the main challenges faced by commercial BGs. Most shaping processes require thermal treatments, which can induce partial crystallization, negatively impacting the biological and mechanical properties of the final product. In this study, we present a novel bioactive glass composition, S53P4_MSK, produced by a melt-quench route.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!