Levulinic acid (LA) is considered to be one of the promising organic bio-platform chemicals and intermediates for the synthesis of fuels, chemicals, and polymers. In the present study, heterogeneous catalytic dehydration of hexose sugars, fructose and glucose, using a strong cation exchange resin (hydrogen form) as an acid catalyst, was performed to produce LA in an aqueous medium. The effect of salts such as NaCl, KCl, CaCl, NaCO, and NaSO in the medium on the rate of sugar conversion and LA yield was evaluated. Under optimum reaction conditions, 10% (w/w) fructose was dehydrated to LA (with 74.6% yield) in 10% (w/w) NaCl aqueous solution in 24 h at 110 °C using the catalyst at 30% (w/w sugar). Even 10% (w/w) glucose monohydrate was directly dehydrated to LA (with 70.7% yield) under similar conditions but at 145 °C. This study shows that the salts enhance the rate of catalytic dehydration in the order of Cl > CO > SO . Thus, the combination of high sugar concentration and heterogeneous catalysis in an aqueous system under relatively mild conditions could provide a high-yielding and sustainable process for bio-based LA production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315427 | PMC |
http://dx.doi.org/10.1021/acsomega.9b04406 | DOI Listing |
Chempluschem
January 2025
Universita degli Studi Di Cagliari, Chemical and Geological Science, S.S. 554 bivio per Sestu, 09042, Monserrato, ITALY.
This work deals with the design of nanocomposite hydrogenation-dehydration bifunctional catalysts for the one-pot conversion of CO2 to dimethyl ether (DME), focusing on obtaining a high and homogeneous dispersion of a Cu-based CO2 hydrogenation phase into the pores of mesostructured supports. Particularly, three aluminosilicate mesostructured acid catalysts with catalytic activity towards methanol dehydration and featuring different porous structures (Al-MCM-41, Al-SBA-15, Al-SBA-16) were synthesized and used as supports to host a CuO/ZnO/ZrO2 (CZZ) CO2 hydrogenation catalyst for methanol synthesis. The use of a mesostructured support allows to maximize the exposed surface of the CO2 reduction function by nanostructuring it through its confinement within the mesochannels, thus obtaining nanocomposite bifunctional catalysts with an ultra-small hydrogenation nanophase.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Chemistry, University of California Irvine, Irvine, CA, USA.
Controlling reaction outcomes through external influences is a central goal in chemistry. Vibrational coupling between molecular vibrations and cavity modes is rapidly emerging as a distinct strategy compared with conventional thermochemical and photochemical methods; however, insight into the fundamental mechanisms remains limited. Here we investigate how vibrational weak and strong coupling in plasmonic nanocavities modifies the thermal dehydration of copper sulfate pentahydrate.
View Article and Find Full Text PDFLayered double hydroxides (LDH) are compounds with unique structures of hydroxide functional groups on their surfaces, and they have the proper arrangement of divalent and trivalent cations to adjust their unique catalytic actions. LDH was synthesized utilizing the co-precipitation technique and was thermally treated at 300 °C. The prepared compounds were chemically and structurally elucidated using FT-IR, XRD, SEM, BET, TG-DTA, and XPS characterization.
View Article and Find Full Text PDFSci Rep
January 2025
New materials Technology and Processing Reserearch Center, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
The conversion of diluted CO₂ into high-energy fuels is increasingly central to renewable energy research. This study investigates the efficacy of a Gd₂NiMnO₆ dendritic nanofibrous (DNF) photocatalyst in transforming carbon dioxide to methane through photoreduction. Gd₂NiMnO₆ DNF was found to provide active adsorption sites and control the strand dimensions for metal groups, facilitating the chemical absorption of CO₂.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:
Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!