The distribution of CGRP immunoreactivity in the cervical, thoracic, lumbar, and sacral levels of the human spinal cord was mapped at the light microscopic level with the aid of a rabbit-generated antiserum against human calcitonin gene-related peptide (CGRP). CGRP-positive fibers formed a dense plexus in lamina I, II, the reticulated region of lamina V, and the tract of Lissauer at all spinal cord levels. The distribution of fibers showed some variations dependent on the cord level analyzed. At the light microscopic level, intervaricose fiber diameters consistently measured 1.0 micron or less, and two types of CGRP varicosities were observed: a small (1 to 2 microns in diameter), relatively round profile and a larger, (3 to 4 microns in diameter) oval or oblong profile. At the electron microscopic level, immunostained varicosities contained a mixture of round clear vesicles and vesicles that contained dense cores. The CGRP immunoreaction product was often associated with vesicles containing dense cores. The reaction product was also seen associated with clear round vesicles or in the cytoplasmic matrix. Postsynaptic elements included dendritic spines, small and large diameter dendritic shafts and vesicle containing profiles. The presence of CGRP in the superficial dorsal horn of human spinal cord is highly suggestive of a role in primary afferent transmission as postulated in lower vertebrates. This study establishes the distribution of CGRP at four different spinal levels in human cord and will serve as a basis for future studies related to the pathologic conditions affecting sensory systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.902690305DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
human spinal
12
microscopic level
12
calcitonin gene-related
8
gene-related peptide
8
peptide cgrp
8
electron microscopic
8
distribution cgrp
8
levels human
8
light microscopic
8

Similar Publications

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Background: The associations of early-onset coronary heart disease (CHD) and genetic susceptibility with incident dementia and brain white matter hyperintensity (WMH) remain unclear. Elucidation of this problem could promote understanding of the neurocognitive impact of early-onset CHD and provide suggestions for the prevention of dementia.

Objectives: This study aimed to investigate whether observed and genetically predicted early-onset CHD were related to subsequent dementia and WMH volume.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Objectives: The population in the U.S., and across the world is aging rapidly which warrants an assessment of the safety of surgical approaches in elderly individuals to better risk stratify and inform surgeons' decision making for optimal patient care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!