Fusarium head blight (FHB), primarily caused by , is one of the most devastating fungal wheat diseases. During the past decades, many efforts have been deployed to dissect FHB resistance, investigating both the wheat responses to infection and, more recently, the fungal determinants of pathogenicity. Although no total resistance has been identified so far, they demonstrated that some plant functions and the expression of specific genes are needed to promote FHB. Associated with the increasing list of effectors able to divert plant molecular processes, this fact strongly argues for a functional link between susceptibility-related factors and the fate of this disease in wheat. In this review, we gather more recent data concerning the involvement of plant and fungal genes and the functions and mechanisms in the development of FHB susceptibility, and we discuss the possibility to use them to diversify the current sources of FHB resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7300258 | PMC |
http://dx.doi.org/10.3389/fpls.2020.00731 | DOI Listing |
Environ Sci Technol
December 2024
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.
View Article and Find Full Text PDFMol Plant Microbe Interact
December 2024
University of Illinois at Urbana-Champaign, Crop Sciences, Urbana, Illinois, United States;
is one of the most important plant-pathogenic fungi that causes disease on wheat and maize, as it decreases yield in both crops and produces mycotoxins that pose a risk to human and animal health. Resistance to Fusarium head blight (FHB) in wheat is well studied and documented. However, resistance to Gibberella ear rot (GER) in maize is less understood, despite several similarities with FHB.
View Article and Find Full Text PDF3 Biotech
January 2025
Agriculture and Environment Department, Harper Adams University, Newport Shropshire, TF10 8NB UK.
Unlabelled: Wheat ( L.), a vital cereal crop, provides over 20% of the total calories and protein in the human diet. However, , the pathogen responsible for Fusarium head blight (FHB), poses a significant threat to wheat production by contaminating grains with harmful mycotoxins.
View Article and Find Full Text PDFPathogens
November 2024
Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Fusarium head blight (FHB), primarily caused by , is one of the economically significant diseases in small grains. FHB causes severe damage to wheat production and grain quality. Several management strategies have been developed to control FHB, and chemical control through fungicides plays a significant role.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Italy. Electronic address:
Fusarium head blight (FHB) represents a significant threat for wheat production due to the risk for food security and safety. Despite the huge number of biofungicides on the market, only one is actually available at European level to control Fusarium infections on cereals. The present work aimed to assess the possible use of Trichoderma asperellum strain ICC012 and Trichoderma gamsii strain ICC080 to manage FHB on common wheat Triticum aestivum cv Apogee.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!