The Role of Extracellular Vesicles in β-Cell Function and Viability: A Scoping Review.

Front Endocrinol (Lausanne)

Sensory Science & Metabolism Unit, Biobehavioral Branch, National Institute of Nursing Research, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States.

Published: May 2021

Extracellular vesicles (EVs) released by cells throughout the body have been implicated in diabetes pathogenesis. Understanding the role of EVs in regulation of β-cell function and viability may provide insights into diabetes etiology and may lead to the development of more effective screening and diagnostic tools to detect diabetes earlier and prevent disease progression. This review was conducted to determine what is known from the literature about the effect of EV crosstalk on pancreatic β-cell function and viability in the pathogenesis of diabetes mellitus, to perform a gap analysis for future research directions, and to discuss implications of available evidence for diabetes care. The literature search yielded 380 studies from which 31 studies were determined to meet eligibility criteria. The majority of studies had the disease context of autoimmunity in T1DM. The most commonly studied EV crosstalk dynamics involved localized EV-mediated communication between β-cells and other islet cells, or between β-cells and immune cells. Other organs and tissues secreting EVs that affect β-cells include skeletal muscle, hepatocytes, adipocytes, immune cells, bone marrow, vascular endothelium, and mesenchymal stem cells. Characterization of EV cargo molecules with regulatory effects in β-cells was conducted in 24 studies, with primary focus on microRNA cargo. Gaps identified included scarcity of evidence for the effect on β-cell function and viability of EVs from major metabolic organs/tissues such as muscle, liver, and adipose depots. Future research should address these gaps as well as characterize a broader range of EV cargo molecules and their activity in β-cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7300279PMC
http://dx.doi.org/10.3389/fendo.2020.00375DOI Listing

Publication Analysis

Top Keywords

β-cell function
16
function viability
16
extracellular vesicles
8
immune cells
8
cargo molecules
8
cells
5
diabetes
5
β-cells
5
role extracellular
4
β-cell
4

Similar Publications

Background: For radiotherapy of head and neck cancer (HNC) magnetic resonance imaging (MRI) plays a pivotal role due to its high soft tissue contrast. Moreover, it offers the potential to acquire functional information through diffusion weighted imaging (DWI) with the potential to personalize treatment. The aim of this study was to acquire repetitive DWI during the course of online adaptive radiotherapy on an 1.

View Article and Find Full Text PDF

Comprehensive analysis of the interaction microbiome and prostate cancer: an initial exploration from multi-cohort metagenome and GWAS studies.

J Transl Med

January 2025

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Wuhan, 430030, P.R. China.

Introduction: Prostate cancer is one of the most common cancers in the United States with a high mortality rate. In recent years, the traditional opinion about prostate microbiome was challenged. Although there still are some arguments, an escalating number of researchers are shifting their focus toward the microbiome within the prostate tumor environment.

View Article and Find Full Text PDF

Exploring the role of oxidative stress in carotid atherosclerosis: insights from transcriptomic data and single-cell sequencing combined with machine learning.

Biol Direct

January 2025

National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.

Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.

View Article and Find Full Text PDF

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!