To evaluate vestibular function in the clinic, current assessments are applied under static conditions, such as with the subject in a sitting or supine position. Considering the complexities of daily activities, the combination of dynamic activities, dynamic visual acuity (DVA) and postural control could produce an evaluation that better reflects vestibular function in daily activities. To develop a novel sensor-based system to investigate DVA, walking trajectory, head and trunk movements and the chest-pelvis rotation ratio during forward and backward overground walking in both healthy individuals and patients with vestibular hypofunction. Fifteen healthy subjects and 7 patients with bilateral vestibular hypofunction (BVH) were recruited for this study. Inertial measurement units were placed on each subject's head and torso. Each subject walked forward and backward for 5 m twice with 2 Hz head yaw. Our experiment comprised 2 stages. In stage 1, we measured forward (FW), backward (BW), and medial-lateral (MLW) walking trajectories; head and trunk movements; and the chest-pelvis rotation ratio. In stage 2, we measured standing and locomotion DVA (loDVA). Using Mann-Whitney -test, we compared the abovementioned parameters between the 2 groups. Patients exhibited an in-phase chest/pelvis reciprocal rotation ratio only in FW. The walking trajectory deviation, calculated by normalizing the summation of medial-lateral swaying with 1/2 body height (%), was significantly larger (FW mean ± standard deviation: 20.4 ± 7.1% (median (M)/interquartile range (IQR): 19.3/14.4-25.2)in healthy vs. 43.9 ± 27. 3% (M/IQR: 36.9/21.3-56.9) in patients, = 0.020)/(BW mean ± standard deviation: 19.2 ± 11.5% (M/IQR: 13.6/10.4-25.3) in healthy vs. 29.3 ± 6.4% (M/IQR: 27.7/26.5-34.4) in patients, = 0.026), and the walking DVA was also significantly higher (LogMAR score in the patient group [FW LogMAR: rightDVA: mean ± standard deviation:0.127 ± 0.081 (M/IQR: 0.127/0.036-0.159) in healthy vs. 0.243 ± 0.101 (M/IQR: 0.247/0.143-0.337) in patients ( = 0.013) and leftDVA: 0.136 ± 0.096 (M/IQR: 0.127/0.036-0.176) in healthy vs. 0.258 ± 0.092 (M/IQR: 0.247/0.176-0.301) in patients ( = 0.016); BW LogMAR: rightDVA: mean ± standard deviation: 0.162 ± 0.097 (M/IQR: 0.159/0.097-0.273) in healthy vs. 0.281 ± 0.130 (M/IQR: 0.273/0.176-0.418) in patients( = 0.047) and leftDVA: 0.156 ± 0.101 (M/IQR: 0.159/0.097-0.198) in healthy vs. 0.298 ± 0.153 (M/IQR: 0.2730/0.159-0.484) in patients ( = 0.038)]. Our sensor-based vestibular evaluation system provided a more functionally relevant assessment for the identification of BVH patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303327PMC
http://dx.doi.org/10.3389/fneur.2020.00485DOI Listing

Publication Analysis

Top Keywords

vestibular function
12
vestibular hypofunction
12
rotation ratio
12
forward backward
12
standard deviation
12
m/iqr
11
patients
10
daily activities
8
walking trajectory
8
head trunk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!