A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Supramolecular Polymer Brushes: Influence of Molecular Weight and Cross-Linking on Linear Viscoelastic Behavior. | LitMetric

Supramolecular Polymer Brushes: Influence of Molecular Weight and Cross-Linking on Linear Viscoelastic Behavior.

Macromolecules

Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Published: June 2020

The origin of unique rheological response in supramolecular brush polymers is investigated using different polymer chemistries (poly(methyl acrylate) (PmA) and poly(ethylene glycol) (PEG)), topologies (linear or star), and molecular weights. A recently developed hydrogen-bonding moiety (1-(6-isocyanatohexyl)-3-(7-oxo-7,8-dihydro-1,8-naphthyridin-2-yl)-urea) (ODIN) was coupled to PmAs and PEGs to form supramolecular brush polymers, the backbone of which is formed by the associated moieties. At low molecular weights of monofunctionalized polymers (both PmA and PEG), the formed brushes are mostly composed of a thick backbone (with very short arms) and are surrounded by other similar brush polymers, which prevent them from diffusing and relaxing. Therefore, the monofunctionalized PmA with a low does not show terminal flow even at the highest experimentally studied temperature (or at longest time scales). By increasing the length of the chains, supramolecular brushes with longer arms are obtained. Due to their lower density of thick backbones, these last ones have more space to move and their relaxation is therefore enhanced. In this work, we show that despite similarities between covalent and transient brush polymers, the elastic response in the latter does not originate from the brush entanglements with a large (entanglement molecular weight), but it rather stems from the impenetrable rigid backbone and caging effect similar to the one described for hyperstars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315638PMC
http://dx.doi.org/10.1021/acs.macromol.0c00074DOI Listing

Publication Analysis

Top Keywords

brush polymers
16
molecular weight
8
supramolecular brush
8
molecular weights
8
brush
5
polymers
5
supramolecular
4
supramolecular polymer
4
polymer brushes
4
brushes influence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!