Utilizing nanopore sequencing technology for the rapid and comprehensive characterization of eleven HLA loci; addressing the need for deceased donor expedited HLA typing.

Hum Immunol

Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:

Published: August 2020

The comprehensive characterization of human leukocyte antigen (HLA) genomic sequences remains a challenging problem. Despite the significant advantages of next-generation sequencing (NGS) in the field of Immunogenetics, there has yet to be a single solution for unambiguous, accurate, simple, cost-effective, and timely genotyping necessary for all clinical applications. This report demonstrates the benefits of nanopore sequencing introduced by Oxford Nanopore Technologies (ONT) for HLA genotyping. Samples (n = 120) previously characterized at high-resolution three-field (HR-3F) for 11 loci were assessed using ONT sequencing paired to a single-plex PCR protocol (Holotype) and to two multiplex protocols OmniType (Omixon) and NGSgo®-MX6-1 (GenDx). The results demonstrate the potential of nanopore sequencing for delivering accurate HR-3F typing with a simple, rapid, and cost-effective protocol. The protocol is applicable to time-sensitive applications, such as deceased donor typings, enabling better assessments of compatibility and epitope analysis. The technology also allows significantly shorter turnaround time for multiple samples at a lower cost. Overall, the nanopore technology appears to offer a significant advancement over current next-generation sequencing platforms as a single solution for all HLA genotyping needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870017PMC
http://dx.doi.org/10.1016/j.humimm.2020.06.004DOI Listing

Publication Analysis

Top Keywords

nanopore sequencing
12
comprehensive characterization
8
deceased donor
8
next-generation sequencing
8
single solution
8
hla genotyping
8
sequencing
6
hla
5
utilizing nanopore
4
sequencing technology
4

Similar Publications

Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, making it widely applicable across various fields. By examining the development and components of single-molecule sequencing technology, it becomes clear that its unique characteristics provide new opportunities for advancing metrological traceability.

View Article and Find Full Text PDF

Since the 1990s, the Pacific oyster has faced significant mortality, which has been associated with the detection of the Ostreid Herpesvirus type 1 (OsHV-1). Due to the complex genomic architecture and the presence of multiple genomic isomers, short-read sequencing using Illumina method struggles to accurately assemble tandem and repeat regions and to identify and characterize large structural variations in the OsHV-1 genome. Third-generation sequencing technologies, as long-read real-time nanopore sequencing from Oxford Nanopore Technologies (ONT), offer new possibilities for OsHV-1 whole-genome analysis.

View Article and Find Full Text PDF

DNA Origami Framework-Based Spatial Nanochip for Circular ssDNA Assembly and Data Storage.

Small

January 2025

Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

A 3D DNA spatial chip (DSC) based on an icosahedral DNA origami framework is introduced to construct customized circular single-stranded DNA (c-ssDNA) for data storage. Within the confined space of the DSC, thirty addressable location sequences extending from the framework edges are available for designing circular paths and directing the assembly of a series of information oligonucleotides for efficient ligation. This strategy is verified by constructing c-ssDNAs from up to 15 fragments to encode two poems (800 and 860 nucleotides).

View Article and Find Full Text PDF

Soil microbes are among the most abundant and diverse organisms on Earth but remain poorly characterized. New technologies have made possible to sequence the DNA of uncultivated microorganisms in soil and other complex ecosystems. Genome assembly is crucial for understanding their functional potential.

View Article and Find Full Text PDF

Background: This study aimed to explore the accuracy of third-generation nanopore sequencing to diagnose extrapulmonary tuberculosis (EPTB).

Methods: Samples were collected from the lesions of 67 patients with suspected EPTB admitted between April 2022 and August 2023. Nanopore sequencing, acid-fast bacilli (AFB) staining, DNA testing, and X-pert and mycobacterial cultures were performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!