Recent evidence has revealed a novel signaling mechanism through which brown adipose tissue (BAT)-derived exosomal microRNAs (miRNAs) influence hepatic gene expression. Here, we uncover neuronal control of these miRNAs and identify exosomal miR-132-3p as a regulator of hepatic lipogenesis under cold stress conditions. Norepinephrine, a sympathetic nervous system neurotransmitter mediating cold-induced BAT activation, altered the composition of brown adipocyte (BAC)-derived exosomal miRNAs; among them, miR-132-3p was significantly induced. The isolated BAC-derived exosomes suppressed expression of hepatic Srebf1, a predicted target of miR-132-3p. In an indirect co-culture system, BACs suppressed expression of hepatic Srebf1 and its target lipogenic genes; this effect was not seen with miR-132-3p-inhibited BACs. Srebf1 was experimentally validated as an miR-132-3p target. Cold stimuli consistently induced miR-132-3p expression in BAT and attenuated Srebf1 expression in the liver. Our results suggest that BAT-derived exosomal miR-132-3p acts as an endocrine factor that regulates hepatic lipogenesis for cold adaptation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.05.090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!