The serotonin (5-HT) system is the target of multiple anxiolytics, including Buspirone, which is a partial agonist of the serotonin 1A receptor (5-HT1A). Similarly, ligands of the serotonin 2A receptor (5-HT2A) were shown to alter anxiety level. The 5-HT1A and 2A receptors are widely expressed across the brain, but the target region(s) underlying the influence of those receptors on anxiety remain unknown. Interestingly, recent studies in human and non-human primates have shown that the 5-HT1A and 5-HT2A binding potentials within the insular cortex (insula) are correlated to anxiety. As an initial step to define the function of 5-HT transmission in the insula, we quantified the proportion of specific neuronal populations of the insula expressing 5-HT1A or 5-HT2A. We analyzed seven neural populations, including three defined by a molecular marker (putative glutamate, GABA or parvalbumin), and four defined by their projections to different downstream targets. First, we found that more than 70% of putative glutamatergic neurons, and only 30% of GABAergic neurons express the 5-HT1A. Second, within insular projection neurons, 5-HT1A is highly expressed (75-80%) in the populations targeting one sub-nuclei of the amygdala (central or basolateral), or targeting the rostral or caudal sections of the lateral hypothalamus (LH). Similarly, 70% of putative glutamatergic neurons and only 30% of insular GABAergic neurons contain 5-HT2A. Finally, the 5-HT2A is present in a majority of insula-amygdala and insula-LH projection neurons (73-82%). These observations suggest that most glutamatergic neurons can respond to 5-HT through 5-HT1A or 5-HT2A in the insula, and that 5-HT directly affects a limited number of GABAergic neurons. This study defines a molecular and neuroanatomical map of the 5-HT system within the insular cortex, providing ground knowledge to identify the potential role of serotonergic modulation of selective insular populations in anxiety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322839 | PMC |
http://dx.doi.org/10.1186/s13041-020-00605-5 | DOI Listing |
Brain
December 2024
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
Chronic pain and fatigue in musculoskeletal disease contribute significantly to disability, and recent studies suggest an association with reduced motivation and excessive fear avoidance. In this behavioural neuroimaging study, we aimed to identify the specific behavioral and neural changes associated with musculoskeletal pain and fatigue during reward and loss decision-making. Twenty-nine participants with chronic inflammatory arthritis and 28 healthy controls performed an instrumental learning task (4-armed bandit) during 3T brain fMRI.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio Grande do Sul, Brazil, Porto Alegre, RS, Brazil.
Background: The COVID-19 pandemic is a public health crisis, and its lasting consequences are not yet fully understood. Epidemiological data suggest that low- and middle-income countries, such as Brazil, will bear a considerable burden of COVID-19-related comorbidities. Individuals who have survived COVID-19 often report persistent symptoms, including neurological manifestations such as brain fog.
View Article and Find Full Text PDFBackground: Attention deficits are notable in Lewy body dementia (LBD) and in Alzheimer's disease (AD), however, its underlying neurobiology and neuropathology are unclear. Functional magnetic resonance imaging (fMRI) and electroencephalograph (EEG) provides information about attention deployment and regional neural oscillatory deficits in LBD and AD. In this study, we combined fMRI and EEG to detect neural correlates of attention dysfunctions in LBD and AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
ISGlobal - Barcelona Institute for Global Health, Barcelona, Catalunya/Barcelona, Spain.
Background: Cognitive resilience can be defined as better-than-expected cognitive performance in the context of Alzheimer's disease (AD) pathologies or increased AD risk. We investigated pathways associated with cognitive resilience trajectories in amyloid positive (A+) and/or APOE4 cognitively unimpaired (CU) older adults including brain resilience, resistance to AD pathologies and vascular pathology.
Method: We included 534 CU ADNI participants with available cognitive data, longitudinal amyloid-PET ( [F]florbetaben and [F]florbetapir) and structural MRI (gray matter volumes) and, as ubset with tau-PET ( [F]AV1451) (n = 287) and white matter hyperintensities (n = 467) volume data (n = 534).
Alzheimers Dement
December 2024
Dokuz Eylul University Hospital Neurology Department, Izmir, Turkey.
Background: Early-onset Alzheimer's disease (EOAD), manifesting before age 65, demands nuanced diagnostic approaches. FDG18-PET unveils metabolic insights, the MRI scale captures structural changes, and ACE-R assesses cognitive impairment details. A holistic evaluation enhances diagnostic precision and enriches our understanding of cognitive decline in early-onset presentations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!