The sacred lotus () is widely cultured in East Asia for its horticultural, agricultural, and medicinal values. Although many molecular markers had been used to extrapolate population genetics of the sacred lotus, a study of large variations, such as copy number variation (CNV), are absent up to now. In this study, we applied whole-genome re-sequencing to 24 lotus accessions, and use read depth information to genotype and filter original CNV call. Totally 448 duplications and 4,267 deletions were identified in the final CNV set. Further analysis of population structure revealed that the population structure patterns revealed by CNV and SNP are largely consistent with each other. Our result indicated that deep sequencing followed by genotyping is a quick and straightforward way to mine out CNV from the population, and the CNV along with SNP could enable us to better comprehend the biology of the plant.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09168451.2020.1786351DOI Listing

Publication Analysis

Top Keywords

sacred lotus
12
copy number
8
number variation
8
population structure
8
cnv snp
8
cnv
6
population
5
identification copy
4
variation population
4
population analysis
4

Similar Publications

Chronic stress exposure has been widely recognized as a significant contributor to numerous central nervous system (CNS) disorders, leading to debilitating behavioral changes such as anxiety, depression, and cognitive impairments. The prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress disrupts the neuroendocrine balance and has detrimental effects on neuronal function and survival. () Gaertn.

View Article and Find Full Text PDF

Nelumbo nucifera, an aquatic crop cultivated throughout Asian countries, belongs to the Nelumbonaceae family and has been widely used in traditional medicines with key pharmacological activities such as anti-viral, antipyretic, antioxidant, anti-steroid, anti-inflammatory, anti-arrhythmia, anti-obesity, and anti-aging properties. The present study aims to explore and assess the phytochemical composition, GC-MS profiling, antioxidant efficacy, and the major phytoconstituent phytol subjected to theoretical spectroscopic characterization using the DFT method. The phytochemical profiling of N.

View Article and Find Full Text PDF

This study aimed to develop a reliable and efficient genetic transformation method for the ornamental Indian Lotus (Nelumbo nucifera Gaertn.) using the sonication-assisted Rhizobium radiobacter-mediated transformation technique. To conduct the transformation, shoot apical meristem explants were infected with Rhizobium radiobacter (synonym Agrobacterium tumefaciens) strain LBA 4404 containing a binary vector pBI121 that harbours the GUS reporter gene (uidA) and kanamycin resistance gene nptII for plant selection.

View Article and Find Full Text PDF

The central nervous system is affected by multiple sclerosis (MS), a chronic autoimmune illness characterized by axonal destruction, demyelination, and inflammation. This article summarizes the state of the field, highlighting its complexity and significant influence on people's quality of life. The research employs a network pharmacological approach, integrating systems biology, bioinformatics, and pharmacology to identify biomarkers associated with MS.

View Article and Find Full Text PDF

Genome-wide development of simple sequence repeat (SSR) markers at 2-Mb intervals in lotus (Nelumbo Adans.).

BMC Genomics

January 2025

Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China.

Background: Despite the rapid advancement of high-throughput sequencing, simple sequence repeats (SSRs) remain indispensable molecular markers for various applied and research tasks owing to their cost-effectiveness and ease of use. However, existing SSR markers cannot meet the growing demand for research on lotus (Nelumbo Adans.) given their scarcity and weak connections to the lotus genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!