Purpose: The aim of this study was to evaluate the influence of different density and amplitude of electric current on the percentage of bone-implant contact (BIC) using the finite element method.
Materials And Methods: Numerical models were performed on commercially pure titanium grade IV implants connected to a 1.5 V battery with an electrical resistance () at 150 kΩ on 10 µA or at 75 kΩ on 20 µA. The percentage of simulated BIC was analysed by varying the electric current from 1 up to 60 µA. The variation of electric current application was simulated for coronal and apical peri-implant regions.
Results: The findings showed that a direct and constant electric current source below 10 μA does not provide a proper current density for osseointegration (BIC < 55%). Electric current sources ranging from 10 to 20 μA resulted in an increase in BIC above 60% while BIC reached 90% on 30 to 40 μA. Also, the application of the current source on 20 μA at the apical peri-implant region resulted in a high BIC percentage at around 86.1%.
Conclusions: The location and intensity of the electrical current source can increase the resultant electrical current density at the implant-bone interface and enhance the bone healing process. Although the model is a simplified version of the biological process in the bone-implant interface, such findings can predict a magnitude of electrical current density required to stimulate osseointegration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2020.1785437 | DOI Listing |
Sci Rep
January 2025
Center for Automation and Robotics, CSIC-Universidad Politécnica de Madrid, Arganda del Rey, Madrid, 28500, Spain.
Aluminium and its alloys, especially Al6061, have gathered significant interest among researchers due to its less density, great durability, and high strength. Due to their lightweight properties, the precise machining of these alloys can become expensive through conventional machining operations for intricate products. Therefore, non-traditional machining such as electric discharge machining (EDM) can potentially be opted for the cutting of Al6061.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Electrocoagulation (EC) has proven its high efficiency and environmental sustainability for treating several types of wastewaters. However, the primary drawbacks of the conventional EC process are the suitable electrode materials and the relatively high cost due to the requirement for electric energy. To overcome these practical challenges, this study investigated effective oil/water separation by a solar-powered electrocoagulation (SPEC) process using a novel highly conductive basalt fabric (BF) cathode.
View Article and Find Full Text PDFLab Anim (NY)
January 2025
Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany.
Two methods dominate the way that zebrafish larvae are euthanized after experimental procedures: anesthetic overdose and rapid cooling. Although MS-222 is easy to apply, this anesthetic takes about a minute to act and fish show aversive reactions and interindividual differences, limiting its reliability. Rapid cooling kills larvae after several hours and is not listed as an approved method in the relevant European Union directive.
View Article and Find Full Text PDFSci Rep
January 2025
School of Technology, Beijing Forestry University, Beijing, 100083, China.
The magnetically suspended flywheel energy storage system (MS-FESS) is an energy storage equipment that accomplishes the bidirectional transfer between electric energy and kinetic energy, and it is widely used as the power conversion unit in the uninterrupted power supply (UPS) system. First, the structure of the FESS-UPS system is introduced, and the working principles at different working states are described. Furthermore, the control strategy of the FESS-UPS is developed, and the switch oscillation of the FESS-UPS system between the charging and discharging states is analyzed.
View Article and Find Full Text PDFSci Rep
January 2025
Acoustics Research Centre, University of Salford, The Crescent, Manchester, M5 4WT, UK.
It is well understood that a significant shift away from fossil fuel based transportation is necessary to limit the impacts of the climate crisis. Electric micromobility modes, such as electric scooters and electric bikes, have the potential to offer a lower-emission alternative to journeys made with internal combustion engine vehicles, and such modes of transport are becoming increasingly commonplace on our streets. Although offering advantages such as reduced air pollution and greater personal mobility, the widespread approval and uptake of electric micromobility is not without its challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!