Sources, Enrichment, and Geochemical Fractions of Soil Trace Metals in Ulaanbaatar, Mongolia.

Arch Environ Contam Toxicol

Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia.

Published: August 2020

Mongolia is a rapidly developing country that has experienced growing industrialization and urbanization in recent decades. This study was conducted to evaluate the enrichment and labile fractions of metals in urban soils of Mongolia and to identify major sources of soil metal pollution. The concentrations and geochemical fractions of Al, Fe, Mn, Cr, Cu, Cd, Co, Zn, V, Mo, As, Sb, and Pb in soils of the city Ulaanbaatar were investigated. The results demonstrate that only Fe, Mn, Co, Mo, and V occur at natural levels with enrichment factors close to unity. The majority of investigated toxic metals, including Cu, Zn, Cr, Sb, As, Cd, and Pb, are serious pollutants in urban soils, with enrichment factors of up to 2.8, 5.1, 2.1, 16, 13, 15, and 11, respectively. Studies of the chemical fractions of metals demonstrate that Zn is mainly found in its labile form and is considered a high risk to humans and biota. Industrial release, household ash, coal combustion, and tire abrasion were identified as key sources of toxic metals entering into the soil of Ulaanbaatar City, which should be controlled effectively to prevent the population as well as pollution distribution over a wider area by long-range atmospheric transport.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-020-00748-5DOI Listing

Publication Analysis

Top Keywords

geochemical fractions
8
fractions metals
8
urban soils
8
enrichment factors
8
toxic metals
8
metals
5
sources enrichment
4
enrichment geochemical
4
fractions
4
fractions soil
4

Similar Publications

This study investigates steam washing (SW) as an innovative pretreatment for municipal solid waste incineration fly ash (MSWI-FA) dechlorination, useful for a more effective stabilization in cementitious matrix. By using a detailed analytical approach (XRPD, XRF, ICP-MS, IRMS, SEM) and geochemical modeling, great focus is dedicated on pollutant leaching reduction and changes in ash physicochemical characteristics as a function of exposure time. The research demonstrates that SW removes up to 70 % cadmium, 17 % zinc, and 10 % lead, primarily by dissolving the soluble and carbonate/hydroxide fractions and promoting the reprecipitation and adsorption of heavy metals into more stable compounds.

View Article and Find Full Text PDF

Dissolved Rare Earth Elements (REEs) concentrations have been widely used in geochemical studies due to their systematic changes in the environment, acting as tracers in various natural processes. In addition to the usefulness of naturally controlled chemical REE fractionations used in the ocean, the extraction and measurement procedures of seawater REEs using chelating resin and ICP-MS may also be subject to method-derived analytical fractionations, leading to potential misinterpretations. The bracketing standard and the Lu methods were compared to verify any fractionation or deviation associated with the analytical processes.

View Article and Find Full Text PDF

Distribution, sources, contamination, and risks of toxic metals in Zijiang River, a typical tributary of the midstream of the Yangtze River in China.

J Environ Sci (China)

July 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China. Electronic address:

Excessive concentrations of toxic metals are a global threat to aquatic systems. Taking a typical tributary (Zijiang River, ZR) of the midstream of the Yangtze River as the research area, the concentration distribution and chemical fractions occurrence characteristics of five toxic metals (Cd, Cr, Cu, Pb, and Zn) were analyzed, their potential sources were explored, and their contamination and ecological risk was assessed. In the surface waters and sediments, there were high concentrations of Zn, a low concentration of Cd, and small spatial differences in concentration among the upstream, midstream, and downstream.

View Article and Find Full Text PDF

Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.

View Article and Find Full Text PDF

Assessing seepage sources of a tailings dump and fractionation of Mo and Zn isotopes.

Sci Total Environ

January 2025

Korea Mine Rehabilitation and Mineral Resources Corporation, Wonju, Gangwon-do 26464, Republic of Korea.

Tracing the sources of each contaminant and its geochemical reactions requires a variety of geochemical tools. In this study, chemical compositions and isotopic ratios of O-H, Mo, and Zn were utilized to identify the sources and geochemical reactions of water, As, Mo, and Zn in the seepage from a mine tailings dump. The distinct chemical compositions observed between the seepage and monitoring well, along with the O-H isotopic ratios, suggested that the seepage originated from creek water rather than nearby groundwater, which was supported by a large seasonal variation of δMo in both the seepage and creek.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!