Hypoxic preconditioning has been shown to improve hypoxic tolerance in mice, accompanied by the downregulation of DNA methyltransferases (DNMTs) in the brain. However, the roles played by DNMTs in the multiple neuroprotective mechanisms associated with hypoxic preconditioning remain poorly understood. This study aimed to establish an in vitro model of hypoxic preconditioning, using a cultured mouse hippocampal neuronal cell line (HT22 cells), to examine the effects of DNMTs on the endogenous neuroprotective mechanisms that occur during hypoxic preconditioning. HT22 cells were divided into a control group, which received no exposure to hypoxia, a hypoxia group, which was exposed to hypoxia once, and a hypoxic preconditioning group, which was exposed to four cycles of hypoxia. To test the ability of hypoxic preadaptation to induce hypoxic tolerance, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay. Cell viability improved in the hypoxic preconditioning group compared with that in the hypoxia group. The effects of hypoxic preconditioning on the cell cycle and apoptosis in HT22 cells were examined by western blot assay and flow cytometry. Compared with the hypoxia group, the expression levels of caspase-3 and spectrin, which are markers of early apoptosis and S-phase arrest, respectively, noticeably reduced in the hypoxic preconditioning group. Finally, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and western blot assay were used to investigate the changes in DNMT expression and activity during hypoxic preconditioning. The results showed that compared with the control group, hypoxic preconditioning downregulated the expression levels of DNMT3A and DNMT3B mRNA and protein in HT22 cells and decreased the activities of total DNMTs and DNMT3B. In conclusion, hypoxic preconditioning may exert anti-hypoxic neuroprotective effects, maintaining HT22 cell viability and inhibiting cell apoptosis. These neuroprotective mechanisms may be associated with the inhibition of DNMT3A and DNMT3B.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749487 | PMC |
http://dx.doi.org/10.4103/1673-5374.285003 | DOI Listing |
Stem Cell Res Ther
December 2024
Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China.
Background: hucMSC-exosomes can be engineered to strengthen their therapeutic potential, and the present study aimed to explore whether hypoxic preconditioning can enhance the angiogenic potential of hucMSC-exosomes in an experimental model of POF.
Methods: Primary hucMSCs and ROMECs were isolated from fresh tissue samples and assessed through a series of experiments. Exosomes were isolated from hucMSCs under normoxic or hypoxic conditions (norm-Exos and hypo-Exos, respectively) and then characterized using classic experimental methods.
Cell Death Dis
December 2024
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
Neuronal necroptosis appears to be suppressed by the deubiquitinating enzyme A20 and is capable to regulate the polarization of microglia/macrophages after cerebral ischemia. We have demonstrated that hypoxic preconditioning (HPC) can alleviate receptor interacting protein 3 (RIP3)-induced necroptosis in CA1 after transient global cerebral ischemia (tGCI). However, it is still unclear whether HPC serves to regulate the phenotypic polarization of microglia/macrophages after cerebral ischemia by mitigating neuronal necroptosis.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:
Periodontitis, an inflammatory and infectious disease resulting from dental plaque, affects tooth-supporting tissues and interconnects with various systemic conditions. Advancing periodontal tissue regeneration stands as pivotal in periodontitis treatment. Presently, odontogenic stem cells garner substantial interest for dental pulp functional tissue regeneration.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
Ischemic preconditioning (IPC) therapy application to attenuate myocardial ischemia-reperfusion (MI/R) injury in clinical practice remains challenging. The secretome, derived from hypoxia-preconditioned cardiomyocytes (SHPC), potentially mimics the IPC microenvironment and facilitates IPC clinical translation. This study aims to determine whether SHPC can be a feasible alternative to IPC for attenuating MI/R injury, and to identify the functional factor of SHPC.
View Article and Find Full Text PDFCytotechnology
February 2025
Cerrahpaşa Faculty of Medicine, Histology and Embryology Department, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
Paracrine factors secreted by mesenchymal stem/stromal cells (MSCs) have been demonstrated to have significant therapeutic potential. The secretome profiles of MSCs variate depending on culture conditions. Generally, the effects of a single preconditioning strategy on secretome profiles of MSCs were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!