A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. | LitMetric

Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data.

Environ Pollut

State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

Published: October 2020

AI Article Synopsis

  • The data indicated that acetylene and ethane levels rose significantly during haze events, with the highest concentrations of alkanes and alkenes occurring during the growth stage of these events.
  • Major sources of VOCs were identified as the petrochemical industry and solvent usage (31.2%), vehicle emissions (20.5%), and combustion emissions (19.1%), with notable increases in their contributions during haze, especially at night, highlighting the need for targeted VOC

Article Abstract

The multi-scale chemical characteristics and source apportionment of volatile organic compounds (VOCs) were analysed in Tianjin, China, using 1-hr resolution VOC-species data between November 1, 2018 and March 15, 2019. The average total VOC (TVOC) concentration was 30.6 ppbv during the heating season. The alkanes accounted for highest proportion of the TVOC, while the alkenes were the predominant species forming ozone, especially ethylene. Compared to the clean period, the concentration of acetylene during the haze events showed highest increase rate, followed by the ethane; and the concentrations and proportions of alkanes and alkenes were highest during the growth stage (GS) of haze events. The multi-scale apportionment results suggested petrochemical industry and solvent usage (PI/SU, 31.2%), vehicle emissions and liquefied petroleum gas (VE/LPG, 20.5%), and combustion emissions (CE, 19.1%) were the main VOC sources during the heating season. Compared to the clean period, the contributions of PI/SU, VE/LPG, CE, and refinery emissions notably increased during the haze events, while that of gasoline evaporation decreased. The contributions of PI/SU and RPI showed significantly increase during the GS of haze events, whereas most sources decreased during the dissipation stage of haze events. Diurnal-variations in source contributions during the haze events were clearer than the clean period, and the contributions of PI/SU, VE/LPG, and CE during the haze events were markedly higher at night. These findings provide valuable information to inform effective VOC control and prevention measures with specific relevance for the control of ozone pollution in Tianjin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115023DOI Listing

Publication Analysis

Top Keywords

haze events
28
clean period
12
contributions pi/su
12
volatile organic
8
source apportionment
8
tianjin china
8
1-hr resolution
8
heating season
8
compared clean
8
stage haze
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: