Pokkah boeng disease (PBD) is a foliar disease causing severe losses in sugarcane crop production. Research into resistance mechanisms against the causal agent, Fusarium verticillioides, is particularly important for farmers and researchers. This work based on the comprehensive analysis of metabolic, proteomic, and bioinformatics data on nitrogen (N) metabolism, which revealed that this biosynthetic reactions was closely related to resistance mechanisms in the sugarcane- F. verticillioides interaction. Our results suggested that pathogen infection reduced the suppression of nitrate reductase (NR) activity, reducing ammonium nitrogen (NH-N) and nitrate nitrogen (NO-N) assimilation, which reduces glutamine synthetase (GS), glutamate synthetase (GOGAT) activity and polynucleotide synthesis and promotes RNA degradation, resulting in a decrease in ribosome levels and protein synthesis. Cysteine was found to be associated with the symptoms of PBD, while alanine, lysine, proline, and glutamic acid were found to be involved in protective and regulatory mechanisms as well. Additionally, glutamate played an important role in sugarcane defense against pathogens through the biosynthesis of proline and polyamines. Cyanamide, glutamate, proline, tyrosine, and arachidonic acid metabolism actively participate in resistance and response to stress. C5XPZ6 and C5XCA6 were considered to be critical proteins and key effectors according to this study. In conclusion, we have identified potential proteins and pathways involved in sugarcane resistance to F. verticillioides, revealing new findings that may be useful in the design of future diagnostics or sugarcane protection strategies and providing new insights into the molecular mechanisms of sugarcane-pathogen interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2020.153207 | DOI Listing |
Hepatol Int
January 2025
National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA.
Secondhand smoke exposure (SHSe) is a public health threat for people with cystic fibrosis (CF) and other lung diseases. Primary smoking reduces CFTR channel function, the causative defect in CF. We reported that SHSe worsens respiratory and nutritional outcomes in CF by disrupting immune responses and metabolic signaling.
View Article and Find Full Text PDFmSystems
January 2025
School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Unlabelled: Despite the prevalence and severity of enterococcal bacteremia (EcB), the mechanisms underlying systemic host responses to the disease remain unclear. Here, we present an extensive study that profiles molecular differences in plasma from EcB patients using an unbiased multi-omics approach. We performed shotgun proteomics and metabolomics on 105 plasma samples, including those from EcB patients and healthy volunteers.
View Article and Find Full Text PDFMini Rev Med Chem
January 2025
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
Metabolic reprogramming is a hallmark of cancer. Distinct and unusual metabolic aberrations occur during tumor development that lead to the growth and development of tumors. Oncogenic signaling pathways eventually converge to regulate three major metabolic pathways in tumor cells i.
View Article and Find Full Text PDFAddict Biol
January 2025
Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!