Electrogenerated chemiluminescence (ECL) of Ru(bpy) was studied at a MoS nanosheets modified glassy carbon electrode (MoSNS/GCE) in neutral condition. Electrochemical results revealed that MoS nanosheets could significantly catalyze the electrochemical oxidation of Ru(bpy), as a result, strong anodic ECL was obtained. Several impact factors, such as the modified amount of MoS nanosheets suspension, the pH value, and the concentration of Ru(bpy), were investigated to obtain the optimal experimental condition. Dopamine exhibited apparent inhibiting effect on ECL intensity of Ru(bpy)-MoS nanosheets through energy transfer process, and could be sensitively detected in the range of 1.0 × 10 to 1.0 × 10 mol L. The linear equation between the decrease of ECL intensity and the logthium of dopamine concentration was determined as ΔI = 9965.02 + 1077.03lgC (C in mol L), with the detection of 8.5 × 10 mol L (3σ). The modified electrode exhibited satisfactory sensitivity, selectivity, and stability, which can be used to detect dopamine in real samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.118607 | DOI Listing |
J Hazard Mater
December 2024
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
J Colloid Interface Sci
December 2024
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China. Electronic address:
Photocatalytic removal of antibiotic such as ciprofloxacin from polluted water is of great value for eco-environment protection. To further enhance the piezoelectric effect in photocatalysis, we designed and synthesized a ternary heterojunction piezoelectric photocatalyst through uniformly loading MoS nanosheets onto BiFeO (BFO) nanofibers, namely MoS/BiS/BFO. Piezoresponse force microscopy and Kelvin probe force microscopy demonstrated its enhanced piezoelectric properties, showing a maximum amplitude displacement of 395.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India.
Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.
View Article and Find Full Text PDFChem Asian J
December 2024
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
The integration of the second material with unique properties into original material to fabricate heterostructure represents an effective strategy to enhance photocatalytic H evolution. Herein, we synthesized a MoS/ZnInS heterostructured photocatalyst using a two-step hydrothermal method. The resulting MoS/ZnInS displayed the flower-like morphology formed by staked nanosheets, significantly accelerating photocatalytic H evolution performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!